Citation: YANG Fan, YU Peng-Yun, ZHAO Juan, ZHAO Yan, WANG Jian-Ping. Intermolecular Hydrogen Bonding Structural Dynamics in Ethylene Glycol by Femtosecond Nonlinear Infrared Spectroscopy[J]. Acta Physico-Chimica Sinica, ;2015, 31(7): 1275-1282. doi: 10.3866/PKU.WHXB201504211 shu

Intermolecular Hydrogen Bonding Structural Dynamics in Ethylene Glycol by Femtosecond Nonlinear Infrared Spectroscopy

  • Received Date: 14 January 2015
    Available Online: 21 April 2015

    Fund Project: 国家自然科学基金(21103200, 20727001, 91121020) (21103200, 20727001, 91121020)中国科学院重大科研装备研制项目(Y2201220)资助 (Y2201220)

  • In this work, we examined the structural and ―OH stretching vibrational dynamics of ethylene glycol (EG) solvated in acetonitrile (MeCN), acetone (AC), tetrahydrofuran (THF), and dimethylsulfoxide (DMSO) using steady-state linear infrared (IR) spectroscopy and ultrafast pump-probe IR spectroscopy. The results suggested that the frequency position, bandwidth, and vibrational relaxation of the ―OH stretching vibration that participate in the formation of intermolecular hydrogen bonds (IHBs) were strongly influenced by the type of solvent. At least two types of IHBs were detected in the EG solution including clustered solute-solute IHBs and solute-solvent IHBs. Quantum chemical calculations predicted a similar solvent dependence of the ―OH stretching vibrational frequency to that observed in the IR experiments. Furthermore, we found that the IHB-involved ―OH stretching mode in the case of solute-solvent clusters displayed the slowest population relaxation dynamics in the case of EG in MeCN. The relaxation became slightly faster in AC and even faster in THF. The fastest dynamics was observed in the case of EG in DMSO. However, in each solvent environment examined, the IHB-involved ―OH stretching mode in the solute-solute cluster displayed the fastest population relaxation. The results obtained in this study provide further insights into different IHB structural dynamics in co-existing solute-solute and solutesolvent clusters.

  • 加载中
    1. [1]

      (1) Nelson, H. C. M.; Finch, J. T.; Luisi, B. F.; Klug, A. Nature 1987, 330 (6145), 221. doi: 10.1038/330221a0

    2. [2]

      (2) Sundaralingam, M.; Sekharudu, Y. C. Science 1989, 244 (4910), 1333. doi: 10.1126/science.2734612

    3. [3]

      (3) Foti, M. C.; Barclay, L. R. C.; In ld, K. U. J. Am. Chem. Soc. 2002, 124 (43), 12881. doi: 10.1021/ja020757l

    4. [4]

      (4) Kim, S. G.; Kim, K. H.; Kim, Y. K.; Shin, S. K.; Ahn, K. H. J. Am. Chem. Soc. 2003, 125 (45), 13819. doi: 10.1021/ja037031p

    5. [5]

      (5) Clarkson, J. R.; Baquero, E.; Shubert, V. A.; Myshakin, E. M.; Jordan, K. D.; Zwier, T. S. Science 2005, 307 (5714), 1443. doi: 10.1126/science.1106977

    6. [6]

      (6) Markle, T. F.; Mayer, J. M. Angew. Chem. 2008, 120 (4), 750.

    7. [7]

      (7) Stillinger, F. H. Science 1980, 209 (4455), 451. doi: 10.1126/science.209.4455.451

    8. [8]

      (8) Deàk, J. C.; Rhea, S. T.; Iwaki, L. K.; Dlott, D. D. J. Phys. Chem. A 2000, 104 (21), 4866. doi: 10.1021/jp994492h

    9. [9]

      (9) Woutersen, S.; Emmerichs, U.; Bakker, H. J. Science 1997, 278 (5338), 658. doi: 10.1126/science.278.5338.658

    10. [10]

      (10) Kropman, M. F.; Nienhuys, H. K.; Woutersen, S.; Bakker, H. J. J. Phys. Chem. A 2001, 105 (19), 4622. doi: 10.1021/jp010057n

    11. [11]

      (11) Kropman, M. F.; Bakker, H. J. Science 2001, 291 (5511), 2118. doi: 10.1126/science.1058190

    12. [12]

      (12) Woutersen, S.; Bakker, H. J. Nature 1999, 402 (6761), 507. doi: 10.1038/990058

    13. [13]

      (13) Bakker, H. J.; Woutersen, S.; Nienhuys, H. K. Chem. Phys. 2000, 258 (2-3), 233.

    14. [14]

      (14) Piletic, I. R.; Moilanen, D. E.; Levinger, N. E.; Fayer, M. D. J. Am. Chem. Soc. 2006, 128 (32), 10366. doi: 10.1021/ja062549p

    15. [15]

      (15) Fecko, C. J.; Loparo, J. J.; Roberts, S. T.; Tokmakoff, A. J. Chem. Phys. 2005, 122 (5), 054506. doi: 10.1063/1.1839179

    16. [16]

      (16) Bakker, H. J.; Gilijamse, J. J.; Lock, A. J. ChemPhysChem 2005, 6 (6), 1146.

    17. [17]

      (17) Roberts, S. T.; Ramasesha, K.; Tokmakoff, A. Accounts Chem. Res. 2009, 42 (9), 1239. doi: 10.1021/ar900088g

    18. [18]

      (18) Li, Q.; Wu, G.; Yu, Z. J. Am. Chem. Soc. 2006, 128 (5), 1438. doi: 10.1021/ja0569149

    19. [19]

      (19) Li, Q.; Wang, N.; Yu, Z. Journal of Molecular Structure- Theorem 2008, 862 (1-3), 74.

    20. [20]

      (20) Li, D.; Yang, F.; Han, C.; Zhao, J.; Wang, J. J. Phys. Chem. Lett. 2012, 3 (23), 3665. doi: 10.1021/jz301652v

    21. [21]

      (21) Woutersen, S.; Emmerichs, U.; Bakker, H. J. J. Chem. Phys. 1997, 107 (5), 1483. doi: 10.1063/1.474501

    22. [22]

      (22) Asbury, J. B.; Steinel, T.; Stromberg, C.; Gaffney, K. J.; Piletic, I. R.; Fayer, M. D. J. Chem. Phys. 2003, 119 (24), 12981.

    23. [23]

      (23) Laenen, R.; Simeonidis, K. Chem. Phys. Lett. 1999, 299 (6), 589. doi: 10.1016/S0009-2614(98)01303-7

    24. [24]

      (24) Nagy, P. I.; Dunn, W. J.; Ala na, G.; Ghio, C. J. Am. Chem. Soc. 1992, 114 (12), 4752. doi: 10.1021/ja00038a044

    25. [25]

      (25) Trindle, C.; Crum, P.; Douglass, K. J. Phys. Chem. A 2003, 107 (32), 6236. doi: 10.1021/jp034598j

    26. [26]

      (26) Foti, M. C.; DiLabio, G. A.; In ld, K. U. J. Am. Chem. Soc. 2003, 125 (47), 14642. doi: 10.1021/ja036168c

    27. [27]

      (27) Lopes Jesus, A. J.; Rosado, M. T. S.; Leitão, M. L. P.; Redinha, J. S. J. Phys. Chem. A 2003, 107 (19), 3891. doi: 10.1021/jp027123l

    28. [28]

      (28) Crittenden, D. L.; Thompson, K. C.; Jordan, M. J. T. J. Phys. Chem. A 2005, 109 (12), 2971. doi: 10.1021/jp045233h

    29. [29]

      (29) Han, C.; Zhao, J.; Yang, F.; Wang, J. J. Phys. Chem. A 2013, 117 (29), 6105. doi: 10.1021/jp400096a

    30. [30]

      (30) Crupi, V.; Maisano, G.; Majolino, D.; Migliardo, P.; Venuti, V. J. Phys. Chem. A 2000, 104 (17), 3933. doi: 10.1021/jp993900e

    31. [31]

      (31) Ma, X.; Wang, J. J. Phys. Chem. A 2009, 113 (21), 6070. doi: 10.1021/jp9016085

    32. [32]

      (32) Olschewski, M.; Lindner, J.; Vöhringer, P. Angew. Chem. Int. Edit. 2013, 52 (9), 2602. doi: 10.1002/anie.v52.9

    33. [33]

      (33) Liu, Y. L.; Yang, F.; Wang, J. P. Acta Chim. Sin. 2013, 71(5), 761. [刘英亮, 杨帆, 王建平. 化学学报, 2013, 71 (5), 761.] doi: 10.6023/A13020166

    34. [34]

      (34) Yang, F.; Liu, Y. L.; Wang, J. P. Acta Phys. -Chim. Sin. 2012, 28 (4), 759. [杨帆, 刘英亮, 王建平. 物理化学学报, 2012, 28 (4), 759.] doi: 10.3866/PKU.WHXB201202023

    35. [35]

      (35) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78 (6), 4066. doi: 10.1063/1.445134

    36. [36]

      (36) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83 (2), 735. doi: 10.1063/1.449486

    37. [37]

      (37) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A. 02; Gaussian Inc.: Pittsburgh, PA, 2009.


  • 加载中
    1. [1]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    2. [2]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    3. [3]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    4. [4]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    5. [5]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    6. [6]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    7. [7]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    8. [8]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    9. [9]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    10. [10]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    11. [11]

      Linfeng Zhou Yulin Zhang Suhao Lin Longguan Zhu . 2023年北京大学金秋营及第37届中国化学奥林匹克决赛磷团簇相关试题解析与拓展. University Chemistry, 2025, 40(8): 376-387. doi: 10.12461/PKU.DXHX202411030

    12. [12]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    13. [13]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    14. [14]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    15. [15]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    16. [16]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    17. [17]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    18. [18]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    19. [19]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    20. [20]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

Metrics
  • PDF Downloads(278)
  • Abstract views(553)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return