Citation:
YANG Fan, YU Peng-Yun, ZHAO Juan, ZHAO Yan, WANG Jian-Ping. Intermolecular Hydrogen Bonding Structural Dynamics in Ethylene Glycol by Femtosecond Nonlinear Infrared Spectroscopy[J]. Acta Physico-Chimica Sinica,
;2015, 31(7): 1275-1282.
doi:
10.3866/PKU.WHXB201504211
-
In this work, we examined the structural and ―OH stretching vibrational dynamics of ethylene glycol (EG) solvated in acetonitrile (MeCN), acetone (AC), tetrahydrofuran (THF), and dimethylsulfoxide (DMSO) using steady-state linear infrared (IR) spectroscopy and ultrafast pump-probe IR spectroscopy. The results suggested that the frequency position, bandwidth, and vibrational relaxation of the ―OH stretching vibration that participate in the formation of intermolecular hydrogen bonds (IHBs) were strongly influenced by the type of solvent. At least two types of IHBs were detected in the EG solution including clustered solute-solute IHBs and solute-solvent IHBs. Quantum chemical calculations predicted a similar solvent dependence of the ―OH stretching vibrational frequency to that observed in the IR experiments. Furthermore, we found that the IHB-involved ―OH stretching mode in the case of solute-solvent clusters displayed the slowest population relaxation dynamics in the case of EG in MeCN. The relaxation became slightly faster in AC and even faster in THF. The fastest dynamics was observed in the case of EG in DMSO. However, in each solvent environment examined, the IHB-involved ―OH stretching mode in the solute-solute cluster displayed the fastest population relaxation. The results obtained in this study provide further insights into different IHB structural dynamics in co-existing solute-solute and solutesolvent clusters.
-
-
-
[1]
(1) Nelson, H. C. M.; Finch, J. T.; Luisi, B. F.; Klug, A. Nature 1987, 330 (6145), 221. doi: 10.1038/330221a0
-
[2]
(2) Sundaralingam, M.; Sekharudu, Y. C. Science 1989, 244 (4910), 1333. doi: 10.1126/science.2734612
-
[3]
(3) Foti, M. C.; Barclay, L. R. C.; In ld, K. U. J. Am. Chem. Soc. 2002, 124 (43), 12881. doi: 10.1021/ja020757l
-
[4]
(4) Kim, S. G.; Kim, K. H.; Kim, Y. K.; Shin, S. K.; Ahn, K. H. J. Am. Chem. Soc. 2003, 125 (45), 13819. doi: 10.1021/ja037031p
-
[5]
(5) Clarkson, J. R.; Baquero, E.; Shubert, V. A.; Myshakin, E. M.; Jordan, K. D.; Zwier, T. S. Science 2005, 307 (5714), 1443. doi: 10.1126/science.1106977
-
[6]
(6) Markle, T. F.; Mayer, J. M. Angew. Chem. 2008, 120 (4), 750.
-
[7]
(7) Stillinger, F. H. Science 1980, 209 (4455), 451. doi: 10.1126/science.209.4455.451
-
[8]
(8) Deàk, J. C.; Rhea, S. T.; Iwaki, L. K.; Dlott, D. D. J. Phys. Chem. A 2000, 104 (21), 4866. doi: 10.1021/jp994492h
-
[9]
(9) Woutersen, S.; Emmerichs, U.; Bakker, H. J. Science 1997, 278 (5338), 658. doi: 10.1126/science.278.5338.658
-
[10]
(10) Kropman, M. F.; Nienhuys, H. K.; Woutersen, S.; Bakker, H. J. J. Phys. Chem. A 2001, 105 (19), 4622. doi: 10.1021/jp010057n
-
[11]
(11) Kropman, M. F.; Bakker, H. J. Science 2001, 291 (5511), 2118. doi: 10.1126/science.1058190
-
[12]
(12) Woutersen, S.; Bakker, H. J. Nature 1999, 402 (6761), 507. doi: 10.1038/990058
-
[13]
(13) Bakker, H. J.; Woutersen, S.; Nienhuys, H. K. Chem. Phys. 2000, 258 (2-3), 233.
-
[14]
(14) Piletic, I. R.; Moilanen, D. E.; Levinger, N. E.; Fayer, M. D. J. Am. Chem. Soc. 2006, 128 (32), 10366. doi: 10.1021/ja062549p
-
[15]
(15) Fecko, C. J.; Loparo, J. J.; Roberts, S. T.; Tokmakoff, A. J. Chem. Phys. 2005, 122 (5), 054506. doi: 10.1063/1.1839179
-
[16]
(16) Bakker, H. J.; Gilijamse, J. J.; Lock, A. J. ChemPhysChem 2005, 6 (6), 1146.
-
[17]
(17) Roberts, S. T.; Ramasesha, K.; Tokmakoff, A. Accounts Chem. Res. 2009, 42 (9), 1239. doi: 10.1021/ar900088g
-
[18]
(18) Li, Q.; Wu, G.; Yu, Z. J. Am. Chem. Soc. 2006, 128 (5), 1438. doi: 10.1021/ja0569149
-
[19]
(19) Li, Q.; Wang, N.; Yu, Z. Journal of Molecular Structure- Theorem 2008, 862 (1-3), 74.
-
[20]
(20) Li, D.; Yang, F.; Han, C.; Zhao, J.; Wang, J. J. Phys. Chem. Lett. 2012, 3 (23), 3665. doi: 10.1021/jz301652v
-
[21]
(21) Woutersen, S.; Emmerichs, U.; Bakker, H. J. J. Chem. Phys. 1997, 107 (5), 1483. doi: 10.1063/1.474501
-
[22]
(22) Asbury, J. B.; Steinel, T.; Stromberg, C.; Gaffney, K. J.; Piletic, I. R.; Fayer, M. D. J. Chem. Phys. 2003, 119 (24), 12981.
-
[23]
(23) Laenen, R.; Simeonidis, K. Chem. Phys. Lett. 1999, 299 (6), 589. doi: 10.1016/S0009-2614(98)01303-7
-
[24]
(24) Nagy, P. I.; Dunn, W. J.; Ala na, G.; Ghio, C. J. Am. Chem. Soc. 1992, 114 (12), 4752. doi: 10.1021/ja00038a044
-
[25]
(25) Trindle, C.; Crum, P.; Douglass, K. J. Phys. Chem. A 2003, 107 (32), 6236. doi: 10.1021/jp034598j
-
[26]
(26) Foti, M. C.; DiLabio, G. A.; In ld, K. U. J. Am. Chem. Soc. 2003, 125 (47), 14642. doi: 10.1021/ja036168c
-
[27]
(27) Lopes Jesus, A. J.; Rosado, M. T. S.; Leitão, M. L. P.; Redinha, J. S. J. Phys. Chem. A 2003, 107 (19), 3891. doi: 10.1021/jp027123l
-
[28]
(28) Crittenden, D. L.; Thompson, K. C.; Jordan, M. J. T. J. Phys. Chem. A 2005, 109 (12), 2971. doi: 10.1021/jp045233h
-
[29]
(29) Han, C.; Zhao, J.; Yang, F.; Wang, J. J. Phys. Chem. A 2013, 117 (29), 6105. doi: 10.1021/jp400096a
-
[30]
(30) Crupi, V.; Maisano, G.; Majolino, D.; Migliardo, P.; Venuti, V. J. Phys. Chem. A 2000, 104 (17), 3933. doi: 10.1021/jp993900e
-
[31]
(31) Ma, X.; Wang, J. J. Phys. Chem. A 2009, 113 (21), 6070. doi: 10.1021/jp9016085
-
[32]
(32) Olschewski, M.; Lindner, J.; Vöhringer, P. Angew. Chem. Int. Edit. 2013, 52 (9), 2602. doi: 10.1002/anie.v52.9
-
[33]
(33) Liu, Y. L.; Yang, F.; Wang, J. P. Acta Chim. Sin. 2013, 71(5), 761. [刘英亮, 杨帆, 王建平. 化学学报, 2013, 71 (5), 761.] doi: 10.6023/A13020166
-
[34]
(34) Yang, F.; Liu, Y. L.; Wang, J. P. Acta Phys. -Chim. Sin. 2012, 28 (4), 759. [杨帆, 刘英亮, 王建平. 物理化学学报, 2012, 28 (4), 759.] doi: 10.3866/PKU.WHXB201202023
-
[35]
(35) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78 (6), 4066. doi: 10.1063/1.445134
-
[36]
(36) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83 (2), 735. doi: 10.1063/1.449486
-
[37]
(37) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A. 02; Gaussian Inc.: Pittsburgh, PA, 2009.
-
[1]
-
-
-
[1]
Yuanyuan Ping , Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092
-
[2]
Xinhao Yan , Guoliang Hu , Ruixi Chen , Hongyu Liu , Qizhi Yao , Jiao Li , Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073
-
[3]
Supin Zhao , Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024
-
[4]
Zhiwen HUANG , Qi LIU , Jianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184
-
[5]
Yang Wang , Yunpeng Fu , Xiaoji Liu , Guotao Zhang , Guobin Li , Wanqiang Liu , Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113
-
[6]
Yanglin Jiang , Mingqing Chen , Min Liang , Yige Yao , Yan Zhang , Peng Wang , Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027
-
[7]
Qi Wang , Yicong Gao , Feng Lu , Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141
-
[8]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[9]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[10]
Lubing Qin , Fang Sun , Meiyin Li , Hao Fan , Likai Wang , Qing Tang , Chundong Wang , Zhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008
-
[11]
Linfeng Zhou , Yulin Zhang , Suhao Lin , Longguan Zhu . 2023年北京大学金秋营及第37届中国化学奥林匹克决赛磷团簇相关试题解析与拓展. University Chemistry, 2025, 40(8): 376-387. doi: 10.12461/PKU.DXHX202411030
-
[12]
Xiaohang JIN , Qi LIU , Jianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125
-
[13]
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064
-
[14]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[15]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[16]
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
-
[17]
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
-
[18]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[19]
Yue Zhang , Bao Li , Lixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038
-
[20]
Ruonan Li , Shijie Liang , Yunhua Xu , Cuifen Zhang , Zheng Tang , Baiqiao Liu , Weiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037
-
[1]
Metrics
- PDF Downloads(278)
- Abstract views(553)
- HTML views(21)