Citation:
WANG Wei-Gang, LI Kun, ZHOU Li, GE Mao-Fa, HOU Si-Qi, TONG Sheng-Rui, MU Yu-Jing, JIA Long. Evaluation and Application of Dual-Reactor Chamber for Studying Atmospheric Oxidation Processes and Mechanisms[J]. Acta Physico-Chimica Sinica,
;2015, 31(7): 1251-1259.
doi:
10.3866/PKU.WHXB201504161
-
A new smog chamber with dual reactors was designed and constructed to study atmospheric oxidation processes that may form ozone or secondary organic aerosols (SOAs). The chamber consists of two 5 m3 fluorinated ethylene propylene (FEP) Teflon-film reactors housed in a thermally isolated enclosure, in which the temperature can be well controlled in the range of -10 to 40 ℃. The influence of the light source on the gasphase oxidation mechanism of propene was investigated. The results showed that multiple ultraviolet (UV) light sources were better than traditional narrow-band black-lamp light sources. Preliminary experiments on propene and m-xylene photo-oxidation processes were performed. The results showed that the dual-reactor chamber can simulate the gas-phase oxidation processes that form ozone or SOAs, and can be used to determine the effects of various species by comparing experiments performed using different initial concentrations. The SOA yield data from m-xylene photo-oxidation under different NOx conditions were in od agreement with those from previous studies. This proves that the chamber can simulate gas-to-particle conversion processes. The dual reactors have the advantage of enabling experiments to be performed with only one key parameter being changed. This will help us to further understand the role of key factors in complex atmospheric pollution processes.
-
-
-
[1]
(1) Carter, W. P. L.; Cocker, D. R.; Fitz, D. R.; Malkina, I. L.; Bumiller, K.; Sauer, C. G.; Pisano, J. T.; Bufalino, C.; Song, C. Atmos. Environ. 2005, 39, 7768. doi: 10.1016/j. atmosenv.2005.08.040
-
[2]
(2) Cocker, D. R.; Flagan, R. C.; Seinfeld, J. H. Environ. Sci. Technol. 2001, 35, 2594. doi: 10.1021/es0019169
-
[3]
(3) Hamilton, J. F.; Alfarra, M. R.; Wyche, K. P.; Ward, M.W.; Lewis, A. C.; McFiggans, G. B.; od, N.; Monks, P. S.; Carr, T.; White, I. R.; Purvis, R. M. Atmos. Chem. Phys. 2011, 11, 5917. doi: 10.5194/acp-11-5917-2011
-
[4]
(4) Hildebrandt, L.; Donahue, N. M.; Pandis, S. N. Atmos. Chem. Phys. 2009, 9, 2973. doi: 10.5194/acp-9-2973-2009
-
[5]
(5) Hynes, R.; An ve, D.; Saunders, S.; Haverd, V.; Azzi, M. Atmos. Environ. 2005, 39, 7251. doi: 10.1016/j.atmosenv.2005.09.005
-
[6]
(6) Jang, M. S.; Kamens, R. M. Environ. Sci. Technol. 2001, 35, 3626. doi: 10.1021/es010676+
-
[7]
(7) Johnson, D.; Jenkin, M. E.; Wirtz, K.; Martin-Reviejo, M. Environ. Chem. 2004, 1, 150. doi: 10.1071/EN04069
-
[8]
(8) Kleindienst, T. E.; Smith, D. F.; Li, W.; Edney, E. O.; Driscoll, D. J.; Speer, R. E.; Weathers, W. S. Atmos. Environ. 1999, 33, 3669. doi: 10.1016/S1352-2310(99)00121-1
-
[9]
(9) Martin-Reviejo, M.; Wirtz, K. Environ. Sci. Technol. 2005, 39, 1045. doi: 10.1021/es049802a
-
[10]
(10) Odum, J. R.; Jungkamp, T. P.W.; Griffin, R. J.; Flagan, R. C.; Seinfeld, J. H. Science 1997, 276, 96. doi: 10.1126/science.276.5309.96
-
[11]
(11) Paulsen, D.; Dommen, J.; Kalberer, M.; Prevot, A. S. H.; Richter, R.; Sax, M.; Steinbacher, M.; Weingartner, E.; Baltensperger, U. Environ. Sci. Technol. 2005, 39, 2668. doi: 10.1021/es0489137
-
[12]
(12) Wang, J.; Doussin, J. F.; Perrier, S.; Perraudin, E.; Katrib, Y.; Pangui, E.; Picquet-Varrault, B. Atmos. Meas. Tech. 2011, 4, 2465. doi: 10.5194/amt-4-2465-2011
-
[13]
(13) Chandramouli, B.; Jang, M. S.; Kamens, R. M. Environ. Sci. Technol. 2003, 37, 4113. doi: 10.1021/es026287c
-
[14]
(14) Lee, S. B.; Bae, G. N.; Lee, Y. M.; Moon, K. C.; Choi, M. Aerosol Air Qual. Res. 2010, 10, 540.
-
[15]
(15) Wang, X.; Liu, T.; Bernard, F.; Ding, X.; Wen, S.; Zhang, Y.; Zhang, Z.; He, Q.; Lu, S.; Chen, J.; Saunders, S.; Yu, J. Atmos. Meas. Tech. 2014, 7, 301. doi: 10.5194/amt-7-301-2014
-
[16]
(16) Wu, S.; Lu, Z.; Hao, J.; Zhao, Z.; Li, J.; Takekawa, H.; Minoura, H.; Yasuda, A. Adv. Atmos. Sci. 2007, 24, 250. doi: 10.1007/s00376-007-0250-3
-
[17]
(17) Xu, Y.; Jia, L.; Ge, M.; Du, L.; Wang, G.; Wang, D. Chin. Sci. Bull. 2006, 51, 2839. doi: 10.1007/s11434-006-2180-3
-
[18]
(18) Jia, L.; Xu, Y. F. Aerosol Sci. Tech. 2014, 48 (1), 1. doi: 10.1080/02786826.2013.847269
-
[19]
(19) Jia, L.; Xu, Y. F.; Shi, Y. Z. Chin. Sci. Bull. 2012, 57, 4472. doi: 10.1007/s11434-012-5375-9
-
[20]
(20) Gai, Y.; Ge, M.; Wang, W. Atmos. Environ. 2009, 43, 3467. doi: 10.1016/j.atmosenv.2009.04.038
-
[21]
(21) Wang, K.; Ge, M.; Wang, W. Atmos. Environ. 2010, 44, 1847. doi: 10.1016/j.atmosenv.2010.02.039
-
[22]
(22) Gai, Y.; Ge, M.; Wang, W. Atmos. Environ. 2011, 45, 53. doi: 10.1016/j.atmosenv.2010.09.047
-
[23]
(23) Gai, Y.; Wang, W.; Ge, M.; Kjaergaard, H. G.; Jørgensen, S.; Du, L. Atmos. Environ. 2013, 77, 696. doi: 10.1016/j.atmosenv.2013.05.041
-
[24]
(24) Li, K.; Wang, W.; Ge, M.; Li, J.; Wang, D. Sci. Rep. 2014, 4, 4922.
-
[25]
(25) Liu, Z.; Ge, M.; Wang, W.; Yin, S.; Tong, S. Phys. Chem. Chem. Phys. 2011, 13, 2069. doi: 10.1039/c0cp00905a
-
[26]
(26) Wang, T. H.; Liu, Z.; Wang, W. G.; Ge, M. F. Acta Phys. -Chim. Sin. 2012, 28, 1608. [王天鹤, 刘泽, 王炜罡, 葛茂发. 物理化学学报, 2012, 28, 1608.] doi: 10.3866/PKU.WHXB201204241
-
[27]
(27) Wang, L.; Wang, W.; Ge, M. Chin. Sci. Bull. 2012, 57, 2567. doi: 10.1007/s11434-012-5146-7
-
[28]
(28) Shi, Y.; Ge, M.; Wang, W. Atmos. Environ. 2012, 60, 9. doi: 10.1016/j.atmosenv.2012.06.034
-
[29]
(29) Cappa, C. D.; Onasch, T. B.; Massoli, P.; Worsnop, D. R.; Bates, T. S.; Cross, E. S.; Davidovits, P.; Hakala, J.; Hayden, K. L.; Jobson, B. T.; Kolesar, K. R.; Lack, D. A.; Lerner, B. M.; Li, S. M.; Mellon, D.; Nuaaman, I.; Olfert, J. S.; Petaja, T.; Quinn, P. K.; Song, C.; Subramanian, R.; Williams, E. J.; Zaveri, R. A. Science 2012, 337, 1078. doi: 10.1126/science.1223447
-
[30]
(30) Symonds, J. P. R.; Reavell, K. S. J.; Olfert, J. S. Aerosol Sci. Tech. 2013, 47 (8), 1.
-
[31]
(31) Metzger, A.; Dommen, J.; Gaeggeler, K.; Duplissy, J.; Prevot, A. S. H.; Kleffmann, J.; Elshorbany, Y.; Wisthaler, A.; Baltensperger, U. Atmos. Chem. Phys. 2008, 8, 6453. doi: 10.5194/acp-8-6453-2008
-
[32]
(32) Grosjean, D. Environ. Sci. Technol. 1985, 19, 1059. doi: 10.1021/es00141a006
-
[33]
(33) Keywood, M. D.; Varutbangkul, V.; Bahreini, R.; Flagan, R. C.; Seinfeld, J. H. Environ. Sci. Technol. 2004, 38, 4157. doi: 10.1021/es035363o
-
[34]
(34) McMurry, P. H.; Grosjean, D. Environ. Sci. Technol. 1985, 19, 1176. doi: 10.1021/es00142a006
-
[35]
(35) McMurry, P. H.; Rader, D. J. Aerosol Sci. Tech. 1985, 4, 249. doi: 10.1080/02786828508959054
-
[36]
(36) Saunders, S. M.; Jenkin, M. E.; Derwent, R. G.; Pilling, M. J. Atmos. Chem. Phys. 2003, 3, 161. doi: 10.5194/acp-3-161-2003
-
[37]
(37) Hu, G. S.; Xu, Y. F.; Jia, L. Acta Chim. Sin. 2011, 69, 1593. [胡高硕, 徐永福, 贾龙. 化学学报, 2011, 69, 1593.]
-
[38]
(38) Odum, J. R.; Hoffmann, T.; Bowman, F.; Collins, D.; Flagan, R. C.; Seinfeld, J. H. Environ. Sci. Technol. 1996, 30, 2580. doi: 10.1021/es950943+
-
[39]
(39) Song, C.; Na, K. S.; Cocker, D. R. Environ. Sci. Technol. 2005, 39, 3143. doi: 10.1021/es0493244
-
[40]
(40) Ng, N. L.; Kroll, J. H.; Chan, A.W. H.; Chhabra, P. S.; Flagan, R. C.; Seinfeld, J. H. Atmos. Chem. Phys. 2007, 7, 3909. doi: 10.5194/acp-7-3909-2007
-
[41]
(41) Takekawa, H.; Minoura, H.; Yamazaki, S. Atmos. Environ. 2003, 37, 3413. doi: 10.1016/S1352-2310(03)00359-5
-
[42]
(42) Svendby, T. M.; Lazaridis, M.; Tørseth, K. J. Atmos. Chem. 2008, 59, 25. doi: 10.1007/s10874-007-9093-7
-
[43]
(43) Koch, R.; Knispel, R.; Elend, M.; Siese, M.; Zetzsch, C. Atmos. Chem. Phys. 2007, 7, 2057. doi: 10.5194/acp-7-2057-2007
-
[44]
(44) Volkamer, R.; Klotz, B.; Barnes, I.; Imamura, T.; Wirtz, K.; Washida, N.; Becker, K. H.; Platt, U. Phys. Chem. Chem. Phys. 2002, 4, 1598. doi: 10.1039/b108747a
-
[45]
(45) Pan, S.; Wang, L. J. Phys. Chem. A 2014, 118, 10778. doi: 10.1021/jp506815v
-
[46]
(46) Kroll, J. H.; Chan, A.W. H.; Ng, N. L.; Flagan, R. C.; Seinfeld, J. H. Environ. Sci. Technol. 2007, 41, 3545. doi: 10.1021/es062059x
-
[1]
-
-
-
[1]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[2]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[3]
Fengxiao Wang , Zhiwei Miao , Yaofeng Yuan . 有机磷化学与化学教学. University Chemistry, 2025, 40(8): 158-168. doi: 10.12461/PKU.DXHX202410077
-
[4]
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
-
[5]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[6]
Aiyi Xin , Jiawei Li , Xinyang Ran , Chuanjiang Fu , Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031
-
[7]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[8]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[9]
Yan Qi , Yueqin Yu , Weisi Guo , Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021
-
[10]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[11]
Houjin Li , Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016
-
[12]
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
-
[13]
Shuixing Dai , Jilei Jiang , Yuxiao Wang , Jinqi Hu , Minghua Huang . Application of Knoevenagel Reaction in Organic Chemistry Teaching. University Chemistry, 2025, 40(5): 334-341. doi: 10.12461/PKU.DXHX202405208
-
[14]
Zhenxing Liu , Jiaen Hu , Zishi Cheng , Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107
-
[15]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[16]
Yongjian Zhang , Fangling Gao , Hong Yan , Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035
-
[17]
Shuai Yuan , Yaofeng Yuan . Academician Chengye Yuan and Organic Phosphorus Chemistry. University Chemistry, 2025, 40(7): 393-400. doi: 10.12461/PKU.DXHX202409123
-
[18]
Ruonan Li , Shijie Liang , Yunhua Xu , Cuifen Zhang , Zheng Tang , Baiqiao Liu , Weiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037
-
[19]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[20]
Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101
-
[1]
Metrics
- PDF Downloads(327)
- Abstract views(763)
- HTML views(15)