Citation:
XIE Xing-Xing, FEI Zhao-Yang, ZOU Chong, LI Zheng-Zhou, CHEN Xian, TANG Ji-Hai, CUI Mi-Fen, QIAO Xu. Effects of Rare-Earth Additives on Structures and Performances of CuO-CeO2-SiO2 Catalysts for Recycling Cl2 from HCl Oxidation[J]. Acta Physico-Chimica Sinica,
;2015, 31(6): 1153-1161.
doi:
10.3866/PKU.WHXB201504145
-
CuO-CeO2-SiO2 and rare-earth-doped CuO-Ce0.9M0.1O2-SiO2 (M=La, Pr, Nd) catalysts for recycling Cl2 from HCl oxidation were prepared by a template method, using activated carbon as a hard template. The catalyst structures were determined using X-ray diffraction (XRD), N2 adsorption-desorption, transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and H2 temperatureprogrammed reduction (H2-TPR). The catalytic performances were also investigated. The results showed that La, Pr, and Nd cations were incorporated into the CeO2 lattice and formed nanosized solid solutions; this greatly reduced the catalyst grain sizes, leading to higher surface areas. In addition, the oxygen vacancy concentrations were significantly improved. The changes in the structures and surface properties of the solid solutions significantly affected the HCl catalytic oxidation performances. The order of the activities of various catalysts was CuO-Ce0.9La0.1O2-SiO2>CuO-Ce0.9Nd0.1O2-SiO2>CuO-Ce0.9Pr0.1O2-SiO2>CuO-CeO2-SiO2. The oxygen vacancy concentrations of the solid solutions were strongly related to their catalytic activities. However, the structures and performances of the Ce0.9M0.1O2-SiO2 catalysts showed that an increase in the number of oxygen vacancies resulted in decreased catalytic activities of the solid solutions. Kinetic studies showed that oxygen adsorption could be the rate-determining step for rare-earth-doped catalysts; a higher oxygen vacancy concentration in the solid solution led to a slower reaction rate when the volumetric flow ratio of O2 to HCl was 1. For the CuOCe0.9M0.1O2-SiO2 catalysts, spillover of oxygen species in the solid solution into the highly dispersed CuO interfaces was enhanced, which increased the overall reaction rate and gave high activity.
-
Keywords:
-
Rare earth
, - CuO-CeO2,
- HCl,
- Catalytic oxidation,
- Chlorine,
- Oxygen vacancy
-
-
-
-
[1]
(1) Pérez-Ramírez, J.; Mondelli, C.; Schmidt, T.; Schlüter, O. F. K.; Wolf, A.; Mleczko, L.; Dreier, T. Energy Environ. Sci. 2011, 4, 4786. doi: 10.1039/c1ee02190g
-
[2]
(2) Deacon, H. Manufacture of Chlorine. U. S. Pat. 85370A, 1868.
-
[3]
(3) Crihan, D.; Knapp, M.; Zweidinger, S.; Lundgren, E.; Weststrate, C. J.; Andersen, J. N.; Seitsonen A. P.; Over, H. Angew. Chem. Int. Edit. 2008, 47, 2131.
-
[4]
(4) Tang, J. H.; Chen, X.; Fei, Z. Y.; Zhao, J. H.; Cui, M. F.; Qiao, X. Ind. Eng. Chem. Res. 2013, 52, 11897. doi: 10.1021/ie400200g
-
[5]
(5) Seki, K. Catal. Surv. Asia 2010, 14, 168. doi: 10.1007/s10563-010-9091-7
-
[6]
(6) Mondelli, C.; Amrute, A. P.; Krumeich, F.; Schmidit, T.; Pérez- Ramírez, J. ChemCatChem 2011, 3, 657. doi: 10.1002/cctc.201000424
-
[7]
(7) Mondelli, C.; Amrute, A. P.; Schmidt, T.; Pérez-Ramírez, J. Chem. Commun. 2011, 47, 7173.
-
[8]
(8) Hernandez, W. Y.; Laguna, O. H.; Centeno, M. A.; Odriozola, J. A. J. Solid State Chem. 2011, 184, 3014. doi: 10.1016/j.jssc.2011.09.018
-
[9]
(9) Cao, H. Y.; Wang, J. L.; Yan, S. H.; Liu, Z. M.; ng, M. C.; Chen, Y. Q. Acta. Phys. -Chim. Sin. 2012, 28 (8), 1936. [曹红岩, 王健礼, 闫生辉, 刘志敏, 龚茂初, 陈耀强. 物理化学学报, 2012, 28 (8), 1936.] doi: 10.3866/PKU.WHXB201205173
-
[10]
(10) Wang, S. Y.; Li, N.; Luo, L. F.; Huang, W. X.; Pu, Z. Y.; Wang, J.W.; Hu, G. S.; Luo, M. F.; Lu, J. Q. Appl. Catal. B: Environ. 2014, 144, 325.
-
[11]
(11) Amrute, A. P.; Mondelli, C.; Moser, M.; Novell-Leruth, G.; López, N.; Rosenthal, D.; Farra, R.; Schüster, M. E.; Teschner, D.; Schmidt, T.; Pérez-Ramírez, J. J. Catal. 2012, 286, 287. doi: 10.1016/j.jcat.2011.11.016
-
[12]
(12) Moser, M.; Mondelli, C.; Schmidt, T.; Girgsdies, F.; Schüster, M. E.; Farra, R.; Szentmiklósi, L.; Teschner, D.; P rez-Ramírez, J. Appl. Catal. B: Environ. 2013, 132-133, 123.
-
[13]
(13) Amrute, A. P.; Larrazábal, G. O.; Mondelli, C.; Pérez Ramírez, J. Angew. Chem. Int. Edit. 2013, 52, 9772. doi: 10.1002/ange.201304254
-
[14]
(14) Chen, X.; Lü, G. M.; Tang, J. H.; Cui, M. F.; Zhou, Z.; Cao, R.; Qiao, X. J. Chem. Eng. Chin. Univ. 2011, 25, 109. [陈献, 吕高明, 汤吉海, 崔咪芬, 周哲, 曹锐, 乔旭. 高校化学工程学报, 2011, 25, 109.]
-
[15]
(15) Fei, Z. Y.; Liu, H. Y.; Dai, Y.; Ji, W. J.; Chen, X.; Tang, J. H.; Cui, M. F.; Qiao, X. Chem. Eng. J. 2014, 257, 273. doi: 10.1016/j.cej.2014.07.033
-
[16]
(16) Jampaiah, D.; Tur, K. M.; Ippolito, S. J.; Sabri, Y. M.; Tardio, J.; Bhargava, S. K.; Reddy, B. M. RSC. Adv. 2013, 3, 12963. doi:10.1039/c3ra41441h
-
[17]
(17) Farra, R.; García-Melchor, M.; Eichelbaum, M.; Hashagen, M.; Frandsen, W.; Allan, J.; Girgsdies, F.; Szentmiklósi, L.; López, N.; Teschner, D. ACS Catal. 2013, 3, 2256. doi: 10.1021/cs4005002
-
[18]
(18) Jiang, J. T.; Wei, X. J.; Xu, C. Y.; Zhou, Z. X.; Zhen, L. J. Magn. Magn. Mater. 2013, 334, 111. doi: 10.1016/j.jmmm.2012.12.036
-
[19]
(19) Hernandez, W. Y.; Laguna, O. H.; Centeno, M. A.; Odriozola, J. A. J. Solid State Chem. 2011, 184, 3014. doi: 10.1016/j.jssc.2011.09.018
-
[20]
(20) Si, R.; Zhang, Y.W.; Li, S. J.; Lin, B. X.; Yan, C. H. J. Phys. Chem. B 2004, 33, 12481.
-
[21]
(21) Meng, Z. H.; Yang, P.; Zhou, R. X. Acta Phys. -Chim. Sin. 2013, 29 (2), 391. [孟中华, 杨鹏, 周仁贤. 物理化学学报, 2013, 29 (2), 391.] doi: 10.3866/PKU.WHXB201212072
-
[22]
(22) Yang, D.; Wang, L.; Sun, Y. Z.; Zhou, K. J. Phys. Chem. C 2010, 114, 8926. doi: 10.1021/jp912227p
-
[23]
(23) Liu, L.; Yao, Z.; Deng, Y.; Gao, F.; Liu, B.; Dong, L. ChemCatChem 2011, 3, 978. doi: 10.1002/cctc.v3.6
-
[24]
(24) Reddy, B. M.; Saikia, P.; Bharali, P.; Park, S. E.; Muhler, M.; Grüunert, W. J. Phys. Chem. C 2009, 113, 2452. doi: 10.1021/jp809837g
-
[25]
(25) Katta, L.; Sudarsanam, P.; Thrimurthulu, G.; Reddy, B. M. Appl. Catal. B: Environ. 2010, 101, 101. doi: 10.1016/j.apcatb.2010.09.012
-
[26]
(26) Gao, X.; Du, X. S.; Cui, L.W.; Fu, Y. C.; Luo, Z. Y.; Cen, K. F. Catal. Commun. 2010, 12, 255.
-
[27]
(27) Menon, U.; Poelman, H.; Bliznuk, V.; Galvita, V. V.; Poelman, D.; Marin, G. B. J. Catal. 2012, 295, 91. doi: 10.1016/j.jcat.2012.07.026
-
[28]
(28) Amrute, A. P.; Mondelli, C.; Miguel, A. G.; Hevia, P. J. J. Phys. Chem. C 2011, 115, 1056.
-
[29]
(29) Farra, R.; Wrabetz, S.; Schuster, E. S.; Stotz, E.; Hamilton, N. G.; Amrute, A. P.; Pérez-Ramírez, J.; López, N.; Teschner, D. Phys. Chem. Chem. Phys. 2013, 15, 3454. doi: 10.1039/c2cp42767b
-
[1]
-
-
-
[1]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[2]
Chunchun Wang , Changjun You , Ke Rong , Chuqi Shen , Fang Yang , Shijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045
-
[3]
Weicheng Feng , Jingcheng Yu , Yilan Yang , Yige Guo , Geng Zou , Xiaoju Liu , Zhou Chen , Kun Dong , Yuefeng Song , Guoxiong Wang , Xinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013
-
[4]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005
-
[5]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[6]
Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378
-
[7]
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023
-
[8]
Wang Wang , Yucheng Liu , Shengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059
-
[9]
Liu Lin , Zemin Sun , Huatian Chen , Lian Zhao , Mingyue Sun , Yitao Yang , Zhensheng Liao , Xinyu Wu , Xinxin Li , Cheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019
-
[10]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[11]
Zhaoyu Wen , Na Han , Yanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001
-
[12]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
-
[13]
Ye Wang , Ruixiang Ge , Xiang Liu , Jing Li , Haohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019
-
[14]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[15]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[16]
Yinjie Xu , Suiqin Li , Lihao Liu , Jiahui He , Kai Li , Mengxin Wang , Shuying Zhao , Chun Li , Zhengbin Zhang , Xing Zhong , Jianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012
-
[17]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[18]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[19]
Yu Dai , Xueting Sun , Haoyu Wu , Naizhu Li , Guoe Cheng , Xiaojin Zhang , Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052
-
[20]
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
-
[1]
Metrics
- PDF Downloads(317)
- Abstract views(882)
- HTML views(39)