Citation: XIE Xing-Xing, FEI Zhao-Yang, ZOU Chong, LI Zheng-Zhou, CHEN Xian, TANG Ji-Hai, CUI Mi-Fen, QIAO Xu. Effects of Rare-Earth Additives on Structures and Performances of CuO-CeO2-SiO2 Catalysts for Recycling Cl2 from HCl Oxidation[J]. Acta Physico-Chimica Sinica, ;2015, 31(6): 1153-1161. doi: 10.3866/PKU.WHXB201504145 shu

Effects of Rare-Earth Additives on Structures and Performances of CuO-CeO2-SiO2 Catalysts for Recycling Cl2 from HCl Oxidation

  • Received Date: 23 December 2014
    Available Online: 14 April 2015

    Fund Project: 国家科技支撑计划(2011BAE18B01) (2011BAE18B01) 江苏省科技支撑计划(BE2011830) (BE2011830) 江苏省高校自然科学基金面上项目(13KJB530006) (13KJB530006) 国家自然科学基金(21306089) (21306089)中国博士后基金(2013M531340)资助 (2013M531340)

  • CuO-CeO2-SiO2 and rare-earth-doped CuO-Ce0.9M0.1O2-SiO2 (M=La, Pr, Nd) catalysts for recycling Cl2 from HCl oxidation were prepared by a template method, using activated carbon as a hard template. The catalyst structures were determined using X-ray diffraction (XRD), N2 adsorption-desorption, transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and H2 temperatureprogrammed reduction (H2-TPR). The catalytic performances were also investigated. The results showed that La, Pr, and Nd cations were incorporated into the CeO2 lattice and formed nanosized solid solutions; this greatly reduced the catalyst grain sizes, leading to higher surface areas. In addition, the oxygen vacancy concentrations were significantly improved. The changes in the structures and surface properties of the solid solutions significantly affected the HCl catalytic oxidation performances. The order of the activities of various catalysts was CuO-Ce0.9La0.1O2-SiO2>CuO-Ce0.9Nd0.1O2-SiO2>CuO-Ce0.9Pr0.1O2-SiO2>CuO-CeO2-SiO2. The oxygen vacancy concentrations of the solid solutions were strongly related to their catalytic activities. However, the structures and performances of the Ce0.9M0.1O2-SiO2 catalysts showed that an increase in the number of oxygen vacancies resulted in decreased catalytic activities of the solid solutions. Kinetic studies showed that oxygen adsorption could be the rate-determining step for rare-earth-doped catalysts; a higher oxygen vacancy concentration in the solid solution led to a slower reaction rate when the volumetric flow ratio of O2 to HCl was 1. For the CuOCe0.9M0.1O2-SiO2 catalysts, spillover of oxygen species in the solid solution into the highly dispersed CuO interfaces was enhanced, which increased the overall reaction rate and gave high activity.

  • 加载中
    1. [1]

      (1) Pérez-Ramírez, J.; Mondelli, C.; Schmidt, T.; Schlüter, O. F. K.; Wolf, A.; Mleczko, L.; Dreier, T. Energy Environ. Sci. 2011, 4, 4786. doi: 10.1039/c1ee02190g

    2. [2]

      (2) Deacon, H. Manufacture of Chlorine. U. S. Pat. 85370A, 1868.

    3. [3]

      (3) Crihan, D.; Knapp, M.; Zweidinger, S.; Lundgren, E.; Weststrate, C. J.; Andersen, J. N.; Seitsonen A. P.; Over, H. Angew. Chem. Int. Edit. 2008, 47, 2131.

    4. [4]

      (4) Tang, J. H.; Chen, X.; Fei, Z. Y.; Zhao, J. H.; Cui, M. F.; Qiao, X. Ind. Eng. Chem. Res. 2013, 52, 11897. doi: 10.1021/ie400200g

    5. [5]

      (5) Seki, K. Catal. Surv. Asia 2010, 14, 168. doi: 10.1007/s10563-010-9091-7

    6. [6]

      (6) Mondelli, C.; Amrute, A. P.; Krumeich, F.; Schmidit, T.; Pérez- Ramírez, J. ChemCatChem 2011, 3, 657. doi: 10.1002/cctc.201000424

    7. [7]

      (7) Mondelli, C.; Amrute, A. P.; Schmidt, T.; Pérez-Ramírez, J. Chem. Commun. 2011, 47, 7173.

    8. [8]

      (8) Hernandez, W. Y.; Laguna, O. H.; Centeno, M. A.; Odriozola, J. A. J. Solid State Chem. 2011, 184, 3014. doi: 10.1016/j.jssc.2011.09.018

    9. [9]

      (9) Cao, H. Y.; Wang, J. L.; Yan, S. H.; Liu, Z. M.; ng, M. C.; Chen, Y. Q. Acta. Phys. -Chim. Sin. 2012, 28 (8), 1936. [曹红岩, 王健礼, 闫生辉, 刘志敏, 龚茂初, 陈耀强. 物理化学学报, 2012, 28 (8), 1936.] doi: 10.3866/PKU.WHXB201205173

    10. [10]

      (10) Wang, S. Y.; Li, N.; Luo, L. F.; Huang, W. X.; Pu, Z. Y.; Wang, J.W.; Hu, G. S.; Luo, M. F.; Lu, J. Q. Appl. Catal. B: Environ. 2014, 144, 325.

    11. [11]

      (11) Amrute, A. P.; Mondelli, C.; Moser, M.; Novell-Leruth, G.; López, N.; Rosenthal, D.; Farra, R.; Schüster, M. E.; Teschner, D.; Schmidt, T.; Pérez-Ramírez, J. J. Catal. 2012, 286, 287. doi: 10.1016/j.jcat.2011.11.016

    12. [12]

      (12) Moser, M.; Mondelli, C.; Schmidt, T.; Girgsdies, F.; Schüster, M. E.; Farra, R.; Szentmiklósi, L.; Teschner, D.; P rez-Ramírez, J. Appl. Catal. B: Environ. 2013, 132-133, 123.

    13. [13]

      (13) Amrute, A. P.; Larrazábal, G. O.; Mondelli, C.; Pérez Ramírez, J. Angew. Chem. Int. Edit. 2013, 52, 9772. doi: 10.1002/ange.201304254

    14. [14]

      (14) Chen, X.; Lü, G. M.; Tang, J. H.; Cui, M. F.; Zhou, Z.; Cao, R.; Qiao, X. J. Chem. Eng. Chin. Univ. 2011, 25, 109. [陈献, 吕高明, 汤吉海, 崔咪芬, 周哲, 曹锐, 乔旭. 高校化学工程学报, 2011, 25, 109.]

    15. [15]

      (15) Fei, Z. Y.; Liu, H. Y.; Dai, Y.; Ji, W. J.; Chen, X.; Tang, J. H.; Cui, M. F.; Qiao, X. Chem. Eng. J. 2014, 257, 273. doi: 10.1016/j.cej.2014.07.033

    16. [16]

      (16) Jampaiah, D.; Tur, K. M.; Ippolito, S. J.; Sabri, Y. M.; Tardio, J.; Bhargava, S. K.; Reddy, B. M. RSC. Adv. 2013, 3, 12963. doi:10.1039/c3ra41441h

    17. [17]

      (17) Farra, R.; García-Melchor, M.; Eichelbaum, M.; Hashagen, M.; Frandsen, W.; Allan, J.; Girgsdies, F.; Szentmiklósi, L.; López, N.; Teschner, D. ACS Catal. 2013, 3, 2256. doi: 10.1021/cs4005002

    18. [18]

      (18) Jiang, J. T.; Wei, X. J.; Xu, C. Y.; Zhou, Z. X.; Zhen, L. J. Magn. Magn. Mater. 2013, 334, 111. doi: 10.1016/j.jmmm.2012.12.036

    19. [19]

      (19) Hernandez, W. Y.; Laguna, O. H.; Centeno, M. A.; Odriozola, J. A. J. Solid State Chem. 2011, 184, 3014. doi: 10.1016/j.jssc.2011.09.018

    20. [20]

      (20) Si, R.; Zhang, Y.W.; Li, S. J.; Lin, B. X.; Yan, C. H. J. Phys. Chem. B 2004, 33, 12481.

    21. [21]

      (21) Meng, Z. H.; Yang, P.; Zhou, R. X. Acta Phys. -Chim. Sin. 2013, 29 (2), 391. [孟中华, 杨鹏, 周仁贤. 物理化学学报, 2013, 29 (2), 391.] doi: 10.3866/PKU.WHXB201212072

    22. [22]

      (22) Yang, D.; Wang, L.; Sun, Y. Z.; Zhou, K. J. Phys. Chem. C 2010, 114, 8926. doi: 10.1021/jp912227p

    23. [23]

      (23) Liu, L.; Yao, Z.; Deng, Y.; Gao, F.; Liu, B.; Dong, L. ChemCatChem 2011, 3, 978. doi: 10.1002/cctc.v3.6

    24. [24]

      (24) Reddy, B. M.; Saikia, P.; Bharali, P.; Park, S. E.; Muhler, M.; Grüunert, W. J. Phys. Chem. C 2009, 113, 2452. doi: 10.1021/jp809837g

    25. [25]

      (25) Katta, L.; Sudarsanam, P.; Thrimurthulu, G.; Reddy, B. M. Appl. Catal. B: Environ. 2010, 101, 101. doi: 10.1016/j.apcatb.2010.09.012

    26. [26]

      (26) Gao, X.; Du, X. S.; Cui, L.W.; Fu, Y. C.; Luo, Z. Y.; Cen, K. F. Catal. Commun. 2010, 12, 255.

    27. [27]

      (27) Menon, U.; Poelman, H.; Bliznuk, V.; Galvita, V. V.; Poelman, D.; Marin, G. B. J. Catal. 2012, 295, 91. doi: 10.1016/j.jcat.2012.07.026

    28. [28]

      (28) Amrute, A. P.; Mondelli, C.; Miguel, A. G.; Hevia, P. J. J. Phys. Chem. C 2011, 115, 1056.

    29. [29]

      (29) Farra, R.; Wrabetz, S.; Schuster, E. S.; Stotz, E.; Hamilton, N. G.; Amrute, A. P.; Pérez-Ramírez, J.; López, N.; Teschner, D. Phys. Chem. Chem. Phys. 2013, 15, 3454. doi: 10.1039/c2cp42767b


  • 加载中
    1. [1]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    2. [2]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    3. [3]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    4. [4]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    7. [7]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    8. [8]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    9. [9]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    12. [12]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    13. [13]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    16. [16]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    17. [17]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    18. [18]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    19. [19]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    20. [20]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

Metrics
  • PDF Downloads(317)
  • Abstract views(882)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return