Citation:
Lü Ye-Qing, ZHENG Shi-Li, WANG Shao-Na, DU Hao, ZHANG Yi. Structure and Diffusivity of Oxygen in Concentrated Alkali-Metal Hydroxide Solutions: A Molecular Dynamics Simulation Study[J]. Acta Physico-Chimica Sinica,
;2015, 31(6): 1045-1053.
doi:
10.3866/PKU.WHXB201504071
-
Molecular dynamics simulations of oxygen molecules in NaOH and KOH solutions at different temperatures (25-120 ℃) and concentrations (1:100-1:5, molar ratios) were performed in this study. The interactions of oxygen molecules with the surrounding solvent and solute were clarified by considering the solvent-solvent, oxygen-solvent, and oxygen-solute radial distribution functions. The self-diffusion coefficients of the oxygen molecules and the solute were both determined by analyzing the mean-squared displacement (MSD) curves, using Einstein's relationship. It was concluded that at all concentrations, the diffusion coefficient of oxygen in NaOH solution is smaller than that in the corresponding KOH solution. The diffusion coefficients for hydroxide, Na+, and K+ decrease with increasing solute concentration, following similar trends to those of oxygen. The oxygen diffusion coefficient obtained in this study is in od agreement with the reported experimental value, suggesting that MSD is an attractive approach to study the oxygen diffusion behavior in strong alkaline solutions at elevated temperatures, which are experimentally extremely challenging.
-
Keywords:
-
Molecular dynamics simulation
, - Oxygen,
- NaOH,
- KOH,
- Diffusion coefficient
-
-
-
-
[1]
(1) Gubbins, K. E.; Walker, R. D. Journal of the Electrochemical Society 1965, 112 (5), 469. doi: 10.1149/1.2423575
-
[2]
(2) Case, B. Electrochimica Acta 1973, 18 (4), 293. doi: 10.1016/0013-4686(73)80031-3
-
[3]
(3) Wang, Z. H.; Zheng, S. L.; Wang, S. N.; Liu, B.; Wang, D.W.; Du, H.; Zhang, Y. Trans. Nonferrous Met. Soc. China 2014, 24(5), 1273. doi: 10.1016/S1003-6326(14)63189-7
-
[4]
(4) Zhang, Y.; Li, Z. H.; Qi, T.; Wang, Z. K.; Zheng, S. L. Chinese Journal of Chemistry 1999, 17 (3), 258." target=_blank>10.1016/S1003-6326(14)63189-7 (4) Zhang, Y.; Li, Z. H.; Qi, T.; Wang, Z. K.; Zheng, S. L. Chinese Journal of Chemistry 1999, 17 (3), 258.
-
[5]
(5) Zhang, Y. J.; Qi, T.; Zhang, Y. Hydrometallurgy 2009, 96, 52. doi: 10.1016/j.hydromet.2008.08.002
-
[6]
(6) Wang, S.; Zheng, S. L.; Zhang, Y. F.; Xu, H. B.; Zhang, Y. The Chinese Journal of Process Engneering 2008, 8 (6), 1148.
-
[7]
(7) Jin, W.; Du, H.; Zheng, S. L.; Xu, H.; Zhang, Y. The Journal of Physical Chemistry B 2010, 114 (19), 6542.
-
[8]
(8) Ratcliff, G. A.; Holdcroft, J. G. Trans. Inst. Chem. Eng. 1963, 41 (10), 315.
-
[9]
(9) Gubbins, K. E.; Bhatia, K. K.; Walker, R. D. AIChE Journal 1966, 12 (3), 548. doi: 10.1002/(ISSN)1547-5905
-
[10]
(10) Tham, M. K.; Walker, R. D.; Gubbins, K. E. The Journal of Physical Chemistry 1970, 74 (8), 1747. doi: 10.1021/j100703a015
-
[11]
(11) Davis, R. E.; Horvath, G. L.; Tobias, C.W. Electrochimica Acta 1967, 12 (3), 287. doi: 10.1016/0013-4686(67)80007-0
-
[12]
(12) Hu, G. L. Journal of Shen Yang Institute of Chemical Technology 1998, 12 (4), 241.
-
[13]
(13) Thapa, S. K.; Adhikari, N. P. International Journal of Modern Physics B 2013, 27 (8), 1.
-
[14]
(14) Takeuchi, H.; Okazaki, K. The Journal of Chemical Physics 1990, 92 (9), 5643. doi: 10.1063/1.458496
-
[15]
(15) Muller-Plathe, F.; Rogers, S. C.; Gunsteren, W. F. The Journal of Chemical Physics 1993, 98 (12), 9895. doi: 10.1063/1.464369
-
[16]
(16) Smith, W.; Forester, T. R. Journal of Molecular Graphics 1996, 14 (3), 136. doi: 10.1016/S0263-7855(96)00043-4
-
[17]
(17) Mancinelli, R.; Botti, A.; Bruni, F.; Ricci, M. A.; Soper, A. K. Physical Chemistry Chemical Physics 2007, 9 (23), 2959. doi: 10.1039/b701855j
-
[18]
(18) Imberti, S.; Botti, A.; Bruni, F.; Cappa, G.; Ricci, M. A.; Soper, A. K. The Journal of Chemical Physics 2005, 122 (19), 194509. doi: 10.1063/1.1899147
-
[19]
(19) Botti, A.; Bruni, F.; Imberti, S.; Ricci, M. A.; Soper, A. K. The Journal of Chemical Physics 2004, 120 (21), 10154. doi: 10.1063/1.1705572
-
[20]
(20) Zhou, J.; Lu, X. H.; Wang, Y. R. Journal of Chemical Engineering of Chinese Universities 2000, 1 (14), 1.
-
[21]
(21) Vácha, R.; Megyes, T.; Bakó, I.; Pusztai, L.; Jungwirth, P. The Journal of Physical Chemistry A 2009, 113 (16), 4022.
-
[22]
(22) Clementi, E.; Barsotti, R. Chemical Physics Letters 1978, 59 (1), 21. doi: 10.1016/0009-2614(78)85605-X
-
[23]
(23) Mezei, M.; Beveridge, D. L. The Journal of Chemical Physics 1981, 74 (12), 6902. doi: 10.1063/1.441101
-
[24]
(24) Impey, R.W.; Madden, P. A.; McDonald, I. R. The Journal of Physical Chemistry 1983, 87 (25), 5071. doi: 10.1021/j150643a008
-
[25]
(25) Nguyen, H. L.; Adelman, S. A. The Journal of Chemical Physics 1984, 81 (10), 4564. doi: 10.1063/1.447430
-
[26]
(26) Marchese, F. T.; Beveridge, D. L. Journal of the American Chemical Society 1984, 106 (13), 3713. doi: 10.1021/ja00325a001
-
[27]
(27) Kistenmacher, H.; Popkie, H.; Clementi, E. The Journal of Chemical Physics 1974, 61 (3), 799. doi: 10.1063/1.1682019
-
[28]
(28) Chandrasekhar, J.; Spellmeyer, D. C.; Jorgensen, W. L. Journal of the American Chemical Society 1984, 106 (4), 903. doi: 10.1021/ja00316a012
-
[29]
(29) Soper, A. K.; Ricci, M. A. Physical Review Letters 2000, 84 (13), 2881. doi: 10.1103/PhysRevLett.84.2881
-
[30]
(30) Okhulkov, A. V.; Demianets, Y. N.; rbaty, Y. E. The Journal of Chemical Physics 1994, 100 (2), 1578. doi: 10.1063/1.466584
-
[31]
(31) Bosio, L.; Chen, S. H.; Teixeira, J. Physical Review A 1983, 27 (3), 1468. doi: 10.1103/PhysRevA.27.1468
-
[32]
(32) Mahler, J.; Persson, I. Inorganic Chemistry 2011, 51 (1), 425.
-
[33]
(33) Chen, B.; Park, J. M.; Ivanov, I.; Tabacchi, G.; Klein, M. L.; Parrinello, M. Journal of the American Chemical Society 2002, 124 (29), 8534. doi: 10.1021/ja020350g
-
[34]
(34) Sokol, M.; Dawid, A.; Dendzik, Z.; Gburski, Z. Journal of Molecular Structure 2004, 704 (1), 341.
-
[35]
(35) Koneshan, S.; Rasaiah, J. C.; Lynden-Bell, R. M.; Lee, S. H. The Journal of Physical Chemistry B 1998, 102 (21), 4193. doi: 10.1021/jp980642x
-
[36]
(36) Chowdhuri, S.; Chandra, A. The Journal of Chemical Physics 2001, 115 (8), 3732. doi: 10.1063/1.1387447
-
[37]
(37) Du, H.; Rasaiah, J. C.; Miller, J. D. The Journal of Physical Chemistry B 2007, 111 (1), 209. doi: 10.1021/jp064659o
-
[38]
(38) Baird, M. H.; Hamielec, A. E. The Canadian Journal of Chemical Engineering 1962, 40 (3), 119. doi: 10.1002/cjce. v40:3
-
[39]
(39) Jordan, J.; Ackerman, E.; Berger, R. L. Journal of the American Chemical Society 1956, 78 (13), 2979. doi: 10.1021/ja01594a015
-
[40]
(40) Ferrell, R. T.; Himmelblau, D. M. Journal of Chemical and Engineering Data 1967, 12 (1), 111. doi: 10.1021/je60032a036
-
[41]
(41) Vivian, J. E.; King, C. J. AIChE Journal 1964, 10 (2), 220.
-
[42]
(42) Davidson, J. F.; Cullen, E. J. Trans. Inst. Chem. Eng. 1957, 35, 51.
-
[43]
(43) Wise, D. L.; Houghton, G. Chemical Engineering Science 1966, 21 (11), 999. doi: 10.1016/0009-2509(66)85096-0
-
[44]
(44) Zhang, X.; Leddy, J.; Bard, A. J. Journal of the American Chemical Society 1985, 107 (12), 3719. doi: 10.1021/ja00298a054
-
[45]
(45) Li, C. M.; Chang, P. The Journal of Chemical Physics 1955, 23 (3), 518. doi: 10.1063/1.1742022
-
[46]
(46) Song, H. L.; Jayendran, C. R. J. Phys. Chem. 1996, 100 (4), 1420. doi: 10.1021/jp953050c
-
[47]
(47) Obst, S.; Bradaczek, H. J. Phys. Chem. 1996, 100 (39), 15677. doi: 10.1021/jp961384b
-
[1]
-
-
-
[1]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[2]
Zhi Zhou , Yu-E Lian , Yuqing Li , Hui Gao , Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104
-
[3]
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024
-
[4]
Zhenming Xu , Yibo Wang , Zhenhui Liu , Duo Chen , Mingbo Zheng , Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096
-
[5]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[6]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003
-
[7]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[8]
Jiayu Gu , Siqi Wang , Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012
-
[9]
Xue-Peng Zhang , Yuchi Long , Yushu Pan , Jiding Wang , Baoyu Bai , Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107
-
[10]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015
-
[11]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[12]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[13]
Jiageng Li , Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098
-
[14]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[15]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[16]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084
-
[17]
Jichao XU , Ming HU , Xichang CHEN , Chunhui WANG , Leichen WANG , Lingyi ZHOU , Xing HE , Xiamin CHENG , Su JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144
-
[18]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[19]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[20]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[1]
Metrics
- PDF Downloads(325)
- Abstract views(988)
- HTML views(59)