Citation:
ZHAO Jun-Feng, SUN Xiao-Li, LI Ji-Lai, HUANG Xu-Ri. Theoretical Study of Methanol C―H and O―H Bond Activation by PtRu Clusters[J]. Acta Physico-Chimica Sinica,
;2015, 31(6): 1077-1085.
doi:
10.3866/PKU.WHXB201504014
-
Density functional theory calculations were performed to study the mechanism and reactivity of methanol oxidation mediated by PtnRum (n+m=3, n≠0) clusters. The potential energy surfaces and pathways of the initial O―H and C―H bond activations were predicted. The results show that the activation of methanol proceeds preferentially along the C―H bond activation pathway. The calculated reactivity order was Pt2Ru>Pt3> PtRu2. Frontier molecular orbital analysis showed that the initial C/O―H bond activation is a proton transfer process. The solvent effect was also investigated. This study will enable a deeper understanding of C/O―H bond activation and provide new ideas for catalyst selection and optimizing conditions for methanol activation.
-
Keywords:
-
Density functional theory
, - Cluster,
- Methanol,
- Reactivity,
- Proton transfer
-
-
-
-
[1]
(1) de Visser, S. P.; Shaik, S. J. Am. Chem. Soc. 2003, 125, 7413. doi: 10.1021/ja034142f
-
[2]
(2) Schwarz, H.; Schröder, D. Pure Appl. Chem. 2000, 72, 2319.
-
[3]
(3) Schwarz, H. Angew. Chem. Int. Edit. 2011, 50, 10096. doi: 10.1002/anie.201006424
-
[4]
(4) Sun, X. L.; Li, J. L.; Huang, X. R.; Sun, C. C. Curr. Inorg. Chem. 2012, 2, 64. doi: 10.2174/1877944111202010064
-
[5]
(5) Li, J. L.; Zhang, X.; Huang, X. R. Phys. Chem. Chem. Phys. 2012, 14, 246. doi: 10.1039/C1CP22187F
-
[6]
(6) Li, J. L.; Geng, C. Y.; Huang, X. R.; Zhang, X.; Sun, C. C. Organometallics 2007, 26, 2203. doi: 10.1021/om070039d
-
[7]
(7) Li, J. L.; Wu, X. N.; Schlangen, M.; Zhou, S. D.; nzález- Navarrete, P.; Tang, S. Y.; Schwarz, H. Angew. Chem. Int. Edit. 2015, doi: 10.1002/anie.201412441.
-
[8]
(8) Shaik, S.; de Visser, S. P.; Ogliaro, F.; Schwarz, H.; Schröder, D. Curr. Opin. Chem. Biol. 2002, 6, 556. doi: 10.1016/S1367-5931(02)00363-0
-
[9]
(9) Ye, S.; Neese, F. Curr. Opin. Chem. Biol. 2009, 13, 89. doi: 10.1016/j.cbpa.2009.02.007
-
[10]
(10) Ye, S.; Neese, F. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 1228. doi: 10.1073/pnas.1008411108
-
[11]
(11) Neese, F. J. Inorg. Biochem. 2006, 100, 716. doi: 10.1016/j.jinorgbio.2006.01.020
-
[12]
(12) Geng, C. Y.; Ye, S.; Neese, F. Angew. Chem. Int. Edit. 2010, 49, 5717. doi: 10.1002/anie.v49:33
-
[13]
(13) Geng, C. Y.; Li, J. L.; Huang, X. R.; Liu, H. L.; Li, Z.; Sun, C. C. J. Comput. Chem. 2008, 29, 686.
-
[14]
(14) Decker, A.; Rohde, J. U.; Klinker, E. J.; Wong, S. D.; Que, L.; Solomon, E. I. J. Am. Chem. Soc. 2007, 129, 15983. doi: 10.1021/ja074900s
-
[15]
(15) Shaik, S.; Kumar, D.; de Visser, S. P.; Altun, A.; Thiel, W. Chem. Rev. 2005, 105, 2279. doi: 10.1021/cr030722j
-
[16]
(16) Shaik, S.; Cohen, S.; Wang, Y.; Chen, H.; Kumar, D.; Thiel, W. Chem. Rev. 2009, 110, 949.
-
[17]
(17) Schöneboom, J. C.; Cohen, S.; Lin, H.; Shaik, S.; Thiel, W. J. Am. Chem. Soc. 2004, 126, 4017. doi: 10.1021/ja039847w
-
[18]
(18) Kwon, Y. H.; Kim, S. C.; Lee, S. Y. Macromolecules 2009, 42, 5244. doi: 10.1021/ma900781c
-
[19]
(19) Martínez-Huerta, M. V.; Rodríguez, J. L.; Tsiouvaras, N.; Peña, M. A.; Fierro, J. L. G.; Pastor, E. Chem. Mater. 2008, 20, 4249. doi: 10.1021/cm703047p
-
[20]
(20) Michel, C.; ltl, F.; Sautet, P. Phys. Chem. Chem. Phys. 2012, 14, 15286. doi: 10.1039/c2cp43014b
-
[21]
(21) Ranea, V. A.; Michaelides, A.; Ramírez, R.; de Andres, P. L.; Vergés, J. A.; King, D. A. Phys. Rev. Lett. 2004, 92, 136104. doi: 10.1103/PhysRevLett.92.136104
-
[22]
(22) Usami, Y.; Kagawa, K.; Kawazoe, M.; Yasuyuki, M.; Sakurai, H.; Haruta, M. Appl. Catal. A-Gen. 1998, 171, 123. doi: 10.1016/S0926-860X(98)00082-9
-
[23]
(23) Hamnett, A. Catal. Today 1997, 38, 445. doi: 10.1016/S0920-5861(97)00054-0
-
[24]
(24) Childers, C. L.; Huang, H. L.; Korzeniewski, C. Langmuir 1999, 15, 786. doi: 10.1021/la980798o
-
[25]
(25) Xu, C.; Wang, R.; Chen, M.; Zhang, Y.; Ding, Y. Phys. Chem. Chem. Phys. 2010, 12, 239. doi: 10.1039/B917788D
-
[26]
(26) Hernández-Fernández, P.; Montiel, M.; Ocón, P.; Fierro, J. L. G.; Wang, H.; Abruña, H. D.; Rojas, S. J. Power Sources 2010, 195, 7959. doi: 10.1016/j.jpowsour.2010.06.009
-
[27]
(27) Wen, Z.; Liu, J.; Li, J. Adv. Mater. 2008, 20, 743.
-
[28]
(28) Li, Y.; Tang, L.; Li, J. Electrochem. Commun. 2009, 11, 846. doi: 10.1016/j.elecom.2009.02.009
-
[29]
(29) Zhao, Y.; Zhan, L.; Tian, J.; Nie, S.; Ning, Z. Electrochim. Acta 2011, 56, 1967. doi: 10.1016/j.electacta.2010.12.005
-
[30]
(30) Santhosh, P.; palan, A.; Lee, K. P. J. Catal. 2006, 238, 177. doi: 10.1016/j.jcat.2005.12.014
-
[31]
(31) McIntyre, D. R.; Burstein, G. T.; Vossen, A. J. Power Sources 2002, 107, 67. doi: 10.1016/S0378-7753(01)00987-9
-
[32]
(32) Raghuveer, V.; Viswanathan, B. J. Power Sources 2005, 144, 1. doi: 10.1016/j.jpowsour.2004.11.033
-
[33]
(33) Hays, C. C.; Manoharan, R.; odenough, J. B. J. Power Sources 1993, 45, 291. doi: 10.1016/0378-7753(93)80018-K
-
[34]
(34) Dang, D.; Gao, H. L.; Peng, L. J.; Su, Y. L.; Liao, S. J.; Wang, Y. Acta Phys. -Chim. Sin. 2011, 27, 2379. [党岱, 高海丽, 彭良进, 苏允兰, 廖世军, 王晔. 物理化学学报, 2011, 27, 2379.] doi: 10.3866/PKU.WHXB20110922
-
[35]
(35) Ali, L. I.; Ali, A. G. A.; Aboul-Fotouh, S. M.; Aboul-Gheit, A. K. Appl. Catal. A-Gen. 1999, 177, 99. doi: 10.1016/S0926-860X (98)00248-8
-
[36]
(36) Lafuente, E.; Muñoz, E.; Benito, A. M.; Maser, W. K.; Martínez, M. T.; Alcaide, F.; Ganborena, L.; Cendoya, I.; Miguel, O.; Rodríguez, J.; Urriolabeitia, E. P.; Navarro, R. J. Mater. Res. 2006, 21, 2841. doi: 10.1557/jmr.2006.0355
-
[37]
(37) Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E. Science 1998, 280, 1735. doi: 10.1126/science.280.5370.1735
-
[38]
(38) Oleg, A. P. J. Solid State Electr. 2008, 12, 609. doi: 10.1007/s10008-007-0500-4
-
[39]
(39) Sun, Y. P.; Xing, L.; Scott, K. J. Power Sources 2010, 195, 1. doi: 10.1016/j.jpowsour.2009.07.028
-
[40]
(40) Luo, J.; Njoki, P. N.; Lin, Y.; Mott, D.; Wang, L.; Zhong, C. J. Langmuir 2006, 22, 2892. doi: 10.1021/la0529557
-
[41]
(41) Luo, J.; Maye, M. M.; Kariuki, N. N.; Wang, L.; Njoki, P.; Lin, Y.; Schadt, M.; Naslund, H. R.; Zhong, C. J. Catal. Today 2005, 99, 291. doi: 10.1016/j.cattod.2004.10.013
-
[42]
(42) Morante-Catacora, T. Y.; Ishikawa, Y.; Cabrera, C. R. J. Electroanal. Chem. 2008, 621, 103. doi: 10.1016/j.jelechem.2008.04.029
-
[43]
(43) Neto, A. O.; Dias, R. R.; Tusi, M. M.; Linardi, M.; Spinacé, E. V. J. Power Sources 2007, 166, 87. doi: 10.1016/j.jpowsour.2006.12.088
-
[44]
(44) Yi, Q.; Zhang, J.; Chen, A.; Liu, X.; Xu, G.; Zhou, Z. J. Appl. Electrochem. 2008, 38, 695. doi: 10.1007/s10800-008-9490-x
-
[45]
(45) Liu, Y. C.; Qiu, X. P.; Huang, Y. Q.; Zhu, W. T. J. Power Sources 2002, 111, 160. doi: 10.1016/S0378-7753(02)00298-7
-
[46]
(46) Thomas, J. M. Angew. Chem. Int. Edit. 1994, 33, 913.
-
[47]
(47) Eller, K.; Schwarz, H. Chem. Rev. 1991, 91, 1121. doi: 10.1021/cr00006a002
-
[48]
(48) Kulesza, P. J.; Matczak, M.; Wolkiewicz, A.; Grzybowska, B.; Galkowski, M.; Malik, M. A.; Wieckowski, A. Electrochim. Acta 1999, 44, 2131. doi: 10.1016/S0013-4686(98)00321-1
-
[49]
(49) Gasteiger, H. A.; Markovic, N.; Ross, P. N.; Cairns, E. J. J. Phys. Chem. 1993, 97, 12020. doi: 10.1021/j100148a030
-
[50]
(50) Lu, Q.; Li, J. P. Guangdong Chemical Industry 2006, 33, 8. [陆勤, 李俊鹏. 广东化工, 2006, 33, 8.],
-
[51]
(51) Zhong, W.; Liu, Y.; Zhang, D. J. Mol. Model. 2012, 18, 3051. doi: 10.1007/s00894-011-1318-7
-
[52]
(52) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.02; Gaussian Inc.:Wallingford, CT, 2009.
-
[53]
(53) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/ 1.464913
-
[54]
(54) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. doi: 10.1063/1.448975
-
[55]
(55) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. doi: 10.1063/1.448799
-
[56]
(56) Fukui, K. J. Phys. Chem. 1970, 74, 4161. doi: 10.1021/j100717a029
-
[57]
(57) Neese, F. WIREs Comput. Mol. Sci. 2012, 2, 73. doi: 10.1002/wcms.81
-
[58]
(58) Neese, F. J. Am. Chem. Soc 2006, 128, 10213. doi: 10.1021/ja061798a
-
[59]
(59) Sun, X. L.; Huang, X. R.; Li, J. L.; Huo, R. P.; Sun, C. C. J. Phys. Chem. A 2012, 116, 1475. doi: 10.1021/jp2120302
-
[60]
(60) Sun, X. L.; Geng, C. Y.; Huo, R. P.; Ryde, U.; Bu, Y. X.; Li, J. L. J. Phys. Chem. B 2014, 118, 1493.
-
[61]
(61) Sun, X. H.; Sun, X. L.; Geng, C. Y.; Zhao, H. T.; Li, J. L. J. Phys. Chem. A 2014, 118, 7146. doi: 10.1021/jp505662x
-
[62]
(62) Huo, R. P.; Zhang, X.; Huang, X. R.; Li, J. L.; Sun, C. C. J. Mol. Model. 2013, 19, 1009. doi: 10.1007/s00894-012-1616-8
-
[63]
(63) Sun, X. L.; Li, J. L.; Huang, X. R.; Sun, C. C. Acta Chim. Sin. 2012, 70, 1245. [孙小丽, 李吉来, 黄旭日, 孙家钟. 化学学报, 2012, 70, 1245.] doi: 10.6023/A1201134
-
[64]
(64) Huo, R. P.; Zhang, X.; Huang, X. R.; Li, J. L.; Sun, C. C. J. Phys. Chem. A 2011, 115, 3576. doi: 10.1021/jp200231n
-
[65]
(65) Pettersen, E. F.; ddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. J. Comput. Chem. 2004, 25, 1605.
-
[66]
(66) Zhang, X.; Schwarz, H. Theor. Chem. Acc. 2011, 129, 389. doi: 10.1007/s00214-010-0861-0
-
[67]
(67) Li, J. L.; Mata, R. A.; Ryde, U. J. Chem. Theory Comput. 2013, 9, 1799. doi: 10.1021/ct301094r
-
[68]
(68) Zhang, X.; Schwarz, H. Chem. -Eur. J. 2010, 16, 5882. doi: 10.1002/chem.201000567
-
[69]
(69) Li, J. L.; Ryde, U. Inorg. Chem. 2014, 53, 11913. doi: 10.1021/ic5010837
-
[70]
(70) Li, J. L.; nzález-Navarrete, P.; Schlangen, M.; Schwarz, H. Chem. -Eur. J. 2015, 21, 7780. doi: 10.1002/chem.201500715
-
[71]
(71) Greeley, J.; Mavrikakis, M. J. Am. Chem. Soc. 2002, 124, 7193. doi: 10.1021/ja017818k
-
[72]
(72) Greeley, J.; Mavrikakis, M. J. Am. Chem. Soc. 2004, 126, 3910. doi: 10.1021/ja037700z
-
[1]
-
-
-
[1]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[2]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[3]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[4]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[5]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[6]
Yanglin Jiang , Mingqing Chen , Min Liang , Yige Yao , Yan Zhang , Peng Wang , Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027
-
[7]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[8]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[9]
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
-
[10]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[11]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[12]
Zhengkun QIN , Zicong PAN , Hui TIAN , Wanyi ZHANG , Mingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429
-
[13]
Tongqi Ye , Yanqing Wang , Qi Wang , Huaiping Cong , Xianghua Kong , Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128
-
[14]
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
-
[15]
Xiaochen Zhang , Fei Yu , Jie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026
-
[16]
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009
-
[17]
Lubing Qin , Fang Sun , Meiyin Li , Hao Fan , Likai Wang , Qing Tang , Chundong Wang , Zhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008
-
[18]
Linfeng Zhou , Yulin Zhang , Suhao Lin , Longguan Zhu . 2023年北京大学金秋营及第37届中国化学奥林匹克决赛磷团簇相关试题解析与拓展. University Chemistry, 2025, 40(8): 376-387. doi: 10.12461/PKU.DXHX202411030
-
[19]
Xiaohang JIN , Qi LIU , Jianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125
-
[20]
Yajuan Xing , Hui Xue , Jing Sun , Niankun Guo , Tianshan Song , Jiawen Sun , Yi-Ru Hao , Qin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046
-
[1]
Metrics
- PDF Downloads(375)
- Abstract views(1133)
- HTML views(43)