Citation:
XU Hai-Ying, KAN Cai-Xia, WANG Chang-Shun, NI Yuan, LIU Jin-Sheng, XU Wei, KE Jun-Hua. Ultrafine Au Nanowires Synthesized via One-Step Wet Chemical Method[J]. Acta Physico-Chimica Sinica,
;2015, 31(6): 1186-1190.
doi:
10.3866/PKU.WHXB201504012
-
Ultrafine Au nanowires (AuNWs) were synthesized in high yields by a one-step wet chemical method using oleylamine as the solvent, surfactant, and reductant. The obtained AuNWs were of high purity and had a high aspect ratio, with diameters of ~2 nm and lengths of tens of micrometers. AuNWs of diameter ~9 nm were also obtained in the presence of oleic acid, at an oleic acid:oleylamine volume ratio of 1:1. The formation of AuNWs was studied by changing the reaction temperature and the volume of oleylamine. It is proposed that the growth mechanism of the Au nanostructures involves strong aurophilic interactions from oleylamine-AuCl complexes; the reduced Au atoms agglomerate and attach to preformed particles, and the oleylamine molecular layer acts as a soft template, leading to one-dimensional growth of Au atoms into AuNWs.
-
-
-
[1]
(1) Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Edit. 2009, 48, 60. doi: 10.1002/anie.200802248
-
[2]
(2) Cui, Y.; Wei, Q. Q.; Park, H. K.; Lieber, C. M. Science 2001, 293, 1289. doi: 10.1126/science.1062711
-
[3]
(3) Hu, S.; Wang, X. Chem. Soc. Rev. 2013, 42, 5577. doi: 10.1039/c3cs00006k
-
[4]
(4) Wiley, B.; Sun, Y. G.; Xia, Y. N. Accounts Chem. Res. 2007, 40, 1067. doi: 10.1021/ar7000974
-
[5]
(5) Halder, A.; Ravishankar, N. Adv. Mater. 2007, 19, 1854.
-
[6]
(6) Hu, Y.; Lu, L. H.; Liu, J. H.; Chen, W. J. Mater. Chem. 2012, 22, 11994. doi: 10.1039/c2jm31483e
-
[7]
(7) Li, C. C.; Cai, W. P.; Kan, C. X.; Zhang, L. D. Mater. Lett. 2004, 58, 196. doi: 10.1016/S0167-577X(03)00444-0
-
[8]
(8) Lacroix, L. M.; Arenal, R.; Viau, G. J. Am. Chem. Soc. 2014, 136, 13075. doi: 10.1021/ja507728j
-
[9]
(9) Takahata, R.; Yamazoe, S.; Koyasu, K.; Tsukuda, T. J. Am. Chem. Soc. 2014, 136, 8489. doi: 10.1021/ja503558c
-
[10]
(10) Kempa, T. J.; Kim, S. K.; Day, R.W.; Park, H. G.; Nocera, D. G.; Lieber, C. M. J. Am. Chem. Soc. 2013, 135, 18354. doi: 10.1021/ja411050r
-
[11]
(11) Long, Y. T.; Zhang, M. N. Sci. China Chem. 2009, 52, 731.
-
[12]
(12) Kan, C. X.; Wang, C. S.; Li, H. C.; Qi, J. S.; Zhu, J. J.; Li, Z. S.; Shi, D. N. Small 2010, 6, 1768. doi: 10.1002/smll.201000600
-
[13]
(13) Kan, C. X.; Zhu, J. J.; Zhu, X. G. Journal of Physics D-Applied Physics 2008, 41, 155304. doi: 10.1088/0022-3727/41/15/155304
-
[14]
(14) Murphy, C. J.; Thompson, L. B.; Chernak, D. J.; Yang, J. A.; Sivapalan, S. T.; Boulos, S. P.; Huang, J. Y.; Alkilany, A. M.; Sisco, P. N. Current Opinion in Colloid & Interface Science 2011, 16, 128.
-
[15]
(15) Li, C. C.; Sun, L.; Sun, Y. Q.; Teranishi, T. Chem. Mater. 2013, 25, 2580. doi: 10.1021/cm400392e
-
[16]
(16) Millstone, J. E.; Hurst, S. J.; Metraux, G. S.; Cutler, J. I.; Mirkin, C. A. Small 2009, 5, 646. doi: 10.1002/smll.v5:6
-
[17]
(17) Dertli, E.; Coskun, S.; Esenturk, E. N. J. Mater. Res. 2013, 28, 250. doi: 10.1557/jmr.2012.407
-
[18]
(18) Sinha, A. K.; Basu, M.; Sarkar, S.; Pradhan, M.; Pal, T. Langmuir 2010, 26, 17419. doi: 10.1021/la102387x
-
[19]
(19) Kim, J. U.; Cha, S. H.; Shin, K.; Jho, J. Y.; Lee, J. C. Adv. Mater. 2004, 16, 459.
-
[20]
(20) Wang, J. G.; Tian, M. L.; Mallouk, T. E.; Chan, M. H.W. J. Phys. Chem. B 2004, 108, 841. doi: 10.1021/jp035068q
-
[21]
(21) Forrer, P.; Schlottig, F.; Siegenthaler, H.; Textor, M. J. Appl. Electrochem. 2000, 30, 533. doi: 10.1023/A:1003941129560
-
[22]
(22) Wang, J. Faraday Discuss. 2013, 164, 9. doi: 10.1039/c3fd00105a
-
[23]
(23) Li, Y.; Koshizaki, N.; Cai, W. P. Coord. Chem. Rev. 2011, 255, 357. doi: 10.1016/j.ccr.2010.09.015
-
[24]
(24) Dar, F. I.; Habouti, S.; Minch, R.; Dietze, M.; Es-Souni, M. J. Mater. Res. 2012, 22, 8671.
-
[25]
(25) Morita, C.; Tanuma, H.; Kawai, C; Ito, Y.; Imura, Y.; Kawai, T. Langmuir 2013, 29, 1669. doi: 10.1021/la304925e
-
[26]
(26) Mizoguchi, D.; Murouchi, M.; Hirata, H.; Takata, Y.; Niidome, Y.; Yamada, S. J. Nanopart. Res. 2011, 13, 6297. doi: 10.1007/s11051-011-0555-0
-
[27]
(27) Kura, H.; Ogawa, T. J. Appl. Phys. 2010, 107, 074310. doi: 10.1063/1.3369441
-
[28]
(28) Huo, Z. Y.; Tsung, C. K.; Huang, W. Y.; Zhang, X. F.; Yang, P. D. Nano Lett. 2008, 8, 2041. doi: 10.1021/nl8013549
-
[29]
(29) Ohnishi, H.; Kondo, Y.; Takayanagi, K. Nature 1998, 395, 780. doi: 10.1038/27399
-
[30]
(30) Kondo, Y.; Takayanagi, K. Science 2000, 289, 606. doi: 10.1126/science.289.5479.606
-
[31]
(31) Pazos-Perez, N.; Baranov, D.; Irsen, S.; Hilgendorff, M.; Liz-Marzan, L. M.; Giersig, M. Langmuir 2008, 24, 9855. doi: 10.1021/la801675d
-
[32]
(32) Wang, C.; Hu, Y.; Lieber, C. M.; Sun, S. J. Am. Chem. Soc. 2008, 130, 8902. doi: 10.1021/ja803408f
-
[33]
(33) Oo, T. Z.; Mathews, N.; Xing, G. C.; Wu, B.; Xing, B. G.; Wong, L. H.; Sum, T. C.; Mhaisalkar, S. G. J. Phys. Chem. C 2012, 116, 6453. doi: 10.1021/jp2099637
-
[34]
(34) Pud, S.; Kisner, A.; Heggen, M.; Belaineh, D.; Temirov, R.; Simon, U.; Offenhausser, A.; Mourzina, Y.; Vitusevich, S. Small 2013, 9, 846. doi: 10.1002/smll.v9.6
-
[35]
(35) Yoshihira, M.; Moriyama, S.; Guerin, H.; Ochi, Y.; Kura, H.; Ogawa, T.; Sato, T.; Maki, H. Appl. Phys. Lett. 2013, 102, 203117-1. doi: 10.1063/1.4807806
-
[36]
(36) Wang, C.; Sun, S. H. Chem. Asian J. 2009, 4, 1028. doi: 10.1002/asia.v4:7
-
[37]
(37) Lu, Y.; Song, J.; Huang, J. Y.; Lou, J. Adv. Funct. Mater. 2011, 21, 3982. doi: 10.1002/adfm.v21.20
-
[38]
(38) Lu, W.; Lieber, C. M. Nat. Mater. 2007, 6, 841. doi: 10.1038/nmat2028
-
[39]
(39) Feng, H.; Yang, Y.; You, Y.; Li, G.; Guo, J.; Yu, T.; Shen, Z.; Wu, T.; Xing, B. Chem. Commun. 2009, 1984.
-
[40]
(40) Lu, X. M.; Yavuz, M. S.; Tuan, H. Y.; Korgel, B. A.; Xia, Y. N. J. Am. Chem. Soc. 2008, 130, 8900. doi: 10.1021/ja803343m
-
[41]
(41) Huang, X.; Li, S.; Wu, S.; Huang, Y.; Boey, F.; Gan, C. L.; Zhang, H. Adv. Mater. 2012, 24, 979. doi: 10.1002/adma.201104153
-
[42]
(42) He, J.; Wang, Y.; Feng, Y.; Qi, X.; Zeng, Z.; Liu, Q.; Teo, W. S.; Gan, C. L.; Zhang, H.; Chen, H. ACS Nano 2013, 7, 2733. doi: 10.1021/nn4001885
-
[1]
-
-
-
[1]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[2]
Huanhuan XIE , Yingnan SONG , Lei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281
-
[3]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[4]
Qizhi Yao , Gu Jin , Pingping Zhu . Modular Analytical Chemistry Experimental Teaching Based on “Comprehensive + Exploratory” Experiments: “One Student, One Plan”, Individualized Experimental Teaching Method. University Chemistry, 2024, 39(3): 143-148. doi: 10.3866/PKU.DXHX202309071
-
[5]
Lina Liu , Xiaolan Wei , Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112
-
[6]
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081
-
[7]
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029
-
[8]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[9]
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
-
[10]
Jianqiao ZHANG , Yang LIU , Yan HE , Yaling ZHOU , Fan YANG , Shihui CHENG , Bin XIA , Zhong WANG , Shijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444
-
[11]
Yue Zhang , Bao Li , Lixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038
-
[12]
Shasha SUN , Weichun HUANG , Mengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430
-
[13]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[14]
Ruiqin Feng , Ye Fan , Yun Fang , Yongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020
-
[15]
Hongpeng He , Mengmeng Zhang , Mengjiao Hao , Wei Du , Haibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043
-
[16]
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
-
[17]
Cunming Yu , Dongliang Tian , Jing Chen , Qinglin Yang , Kesong Liu , Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008
-
[18]
Yang Li , Jiachen Li , Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016
-
[19]
Yingtong FAN , Yujin YAO , Shouhao WAN , Yihang SHEN , Xiang GAO , Cuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043
-
[20]
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
-
[1]
Metrics
- PDF Downloads(454)
- Abstract views(1440)
- HTML views(136)