Citation:
XU Jing, YANG De-Zhi, LIAO Xiao-Zhen, HE Yu-Shi, MA Zi-Feng. Electrochemical Performances of Reduced Graphene Oxide/Titanium Dioxide Composites for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinica,
;2015, 31(5): 913-919.
doi:
10.3866/PKU.WHXB201503162
-
Anatase TiO2 shows excellent long-term cycling stability as an anode for sodium-ion batteries. However, the low specific capacity and poor rate capability resulting from its intrinsic low electrical conductivity limit its applications. In this work, TiO2 nanoparticles were coated with reduced graphene oxide (R ) using a combination of spray-drying and heat treatment. Electrochemical tests showed that the obtained R /TiO2 composites had improved electrochemical performances. The reversible capacities of the R /TiO2 [4.0% (w)] composites were 183.7 mAh·g-1 (20 mA·g-1), 153.7 mAh·g-1 (100 mA·g-1), and 114.4 mAh·g-1 (600 mA·g-1). Bare TiO2 showed low capacities of 93.6mAh·g-1 (20mA·g-1), 69.6mAh·g-1 (100mA·g-1), and 26.5mAh·g-1 (600 mA·g-1). The 4.0%(w) TiO2/R composites exhibited od cycling stability with a charge capacity of 146.7 mAh·g-1 at a current density of 100 mA·g-1 after 350 cycles, compared with 68.8 mAh·g-1 for bare TiO2. R modification is a promising method for improving the electrochemical performances of the sodium energystorage materials.
-
-
-
[1]
(1) Ong, S. P.; Chevrier, V. L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X.; Ceder, G. Energy Environ. Sci. 2011, 4, 3680. doi: 10.1039/c1ee01782a
-
[2]
(2) Pan, H.; Hu, Y. S.; Chen, L. Energy Environ. Sci. 2013, 6, 2338. doi: 10.1039/c3ee40847g
-
[3]
(3) Chevrier, V.; Ceder, G. J. Electrochem. Soc. 2011, 158, A1011.
-
[4]
(4) Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero- nzález, J.; Rojo, T. Energy Environ. Sci. 2012, 5, 5884. doi: 10.1039/c2ee02781j
-
[5]
(5) Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Adv. Funct. Mater. 2013, 23, 947. doi: 10.1002/adfm.v23.8
-
[6]
(6) Alcántara, R.; Jiménez-Mateos, J. M.; Lavela, P.; Tirado, J. L. Electrochem. Commun. 2001, 3, 639. doi: 10.1016/S1388-2481(01)00244-2
-
[7]
(7) Alcántara, R.; Lavela, P.; Ortiz, G. F.; Tirado, J. L. Electrochem. Solid-State Lett. 2005, 8, A222.
-
[8]
(8) Doeff, M. M.; Ma, Y.; Visco, S. J.; De Jonghe, L. C. J. Electrochem. Soc. 1993, 140, L169.
-
[9]
(9) Stevens, D.; Dahn, J. R. J. Electrochem. Soc. 2000, 147, 1271. doi: 10.1149/1.1393348
-
[10]
(10) Stevens, D.; Dahn, J. R. J. Electrochem. Soc. 2001, 148, A803.
-
[11]
(11) Ong, S. P.; Chevrier, V. L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X.; Ceder, G. Energy Environ. Sci. 2011, 4, 3680. doi: 10.1039/c1ee01782a
-
[12]
(12) Huang, J. P.; Yuan, D. D.; Zhang, H. Z.; Cao, Y. L.; Li, G. R.; Yang, H. X.; Gao, X. P. RSC Adv. 2013, 3, 12593. doi: 10.1039/c3ra42413h
-
[13]
(13) Kavan, L.; Kratochvilová, K.; Grätzel, M. J. Electroanal. Chem. 1995, 394, 93. doi: 10.1016/0022-0728(95)03976-N
-
[14]
(14) Senguttuvan, P.; Rousse, G.; Seznec, V.; Tarascon, J. M.; Palacin, M. R. Chem. Mater. 2011, 23, 4109. doi: 10.1021/cm202076g
-
[15]
(15) Xu, Y.; Lotfabad, E. M.; Wang, H. L.; Farbod, B.; Xu, Z.W.; Kohandehghan, A.; Mitlin, D. Chem. Commun. 2013, 49, 8973. doi: 10.1039/c3cc45254a
-
[16]
(16) Komaba, S.; Matsuura, Y.; Ishikawa, T.; Yabuuchi, N.; Murata, W.; Kuze, S. Electrochem. Commun. 2012, 21, 650.
-
[17]
(17) Qian, J.; Chen, Y.; Wu, L.; Cao, Y.; Ai, X.; Yang, H. Chem. Commun. 2012, 48, 7070. doi: 10.1039/c2cc32730a
-
[18]
(18) Xiao, L.; Cao, Y.; Xiao, J.; Wang, W.; Kovarik, L.; Nie, Z.; Liu, J. Chem. Commun. 2012, 48, 3321. doi: 10.1039/c2cc17129e
-
[19]
(19) Park, Y.; Shin, D. S.; Woo, S. H.; Choi, N. S.; Shin, K. H.; Oh, S. M.; Lee, K. T.; Hong, S. Y. Adv. Mater. 2012, 24, 3562. doi: 10.1002/adma.201201205
-
[20]
(20) Zhu, L.; Niu, Y.; Cao, Y.; Lei, A.; Ai, X.; Yang, H. Electrochim. Acta 2012, 78, 27. doi: 10.1016/j.electacta.2012.05.152
-
[21]
(21) Zhao, L.; Zhao, J.; Hu, Y. S.; Li, H.; Zhou, Z.; Armand, M.; Chen, L. Adv. Energy Mater. 2012, 2, 962. doi: 10.1002/aenm.v2.8
-
[22]
(22) Hummers, W. S., Jr.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. doi: 10.1021/ja01539a017
-
[23]
(23) Dambournet, D.; Belharouak, I.; Amine, K. Chem. Mater. 2009, 22, 1173.
-
[24]
(24) Wagemaker, M.; van de Krol, R.; Kentgens, A. P.; VanWell, A. A.; Mulder, F. M. J. Am. Chem. Soc. 2001, 123, 11454. doi: 10.1021/ja0161148
-
[1]
-
-
-
[1]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005
-
[2]
Zilin Hu , Yaoshen Niu , Xiaohui Rong , Yongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005
-
[3]
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
-
[4]
Yu Guo , Zhiwei Huang , Yuqing Hu , Junzhe Li , Jie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015
-
[5]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014
-
[6]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023
-
[7]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[8]
Ruolin CHENG , Yue WANG , Xiyao NIU , Huagen LIANG , Ling LIU , Shijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424
-
[9]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[10]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[11]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[12]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[13]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[14]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[15]
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
-
[16]
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
-
[17]
Lisha LEI , Wei YONG , Yiting CHENG , Yibo WANG , Wenchao HUANG , Junhuan ZHAO , Zhongjie ZHAI , Yangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202
-
[18]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[19]
Yue Zhang , Bao Li , Lixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038
-
[20]
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
-
[1]
Metrics
- PDF Downloads(346)
- Abstract views(742)
- HTML views(51)