Citation: XU Jia-Qi, GUO Jun-Jiang, LIU Ai-Ke, WANG Jian-Li, TAN Ning-Xin, LI Xiang-Yuan. Construction of Autoignition Mechanisms for the Combustion of RP-3 Surrogate Fuel and Kinetics Simulation[J]. Acta Physico-Chimica Sinica, ;2015, 31(4): 643-652. doi: 10.3866/PKU.WHXB201503022 shu

Construction of Autoignition Mechanisms for the Combustion of RP-3 Surrogate Fuel and Kinetics Simulation

  • Received Date: 2 November 2014
    Available Online: 2 March 2015

    Fund Project: 国家自然科学基金(91441132)资助项目 (91441132)

  • According to a component analysis of RP- 3 aviation kerosene and eight surrogate models' comparative data, a surrogate model comprising n-dodecane/1,3,5-trimethylcyclohecane/n-propylbenzene (73.0%/14.7%/12.3%, mass fraction) was obtained. A detailed mechanism for the combustion of RP-3 surrogate fuel at high temperature was developed using an automatic generation software package, ReaxGen. Ignition delay times simulated using this mechanism were compared with experimental data. A detailed mechanism was reduced by adopting rate-of-production analysis and approximate trajectory optimization al rithm (ATOA) reduced methods. Finally, the sensitivity of ignition delay time was analyzed under conditions of different equivalent ratios and pressures using the reduced mechanism. Differences in key reactions contributing to the ignition delay time were identified at different equivalent ratios. The results indicate that our mechanisms can characterize the ignition delay time during combustion of RP-3 kerosene at high temperature.

  • 加载中
    1. [1]

      (1) Humer, S.; Frassoldati, A.; Granata, S.; Faravelli, T.; Ranzi, E.; Seiser, R.; Seshadri, K. Proc. Combust. Inst. 2007, 31 (1), 393. doi: 10.1016/j.proci.2006.08.008

    2. [2]

      (2) Dagaut, P. Phys. Chem. Chem. Phys. 2002, 4 (11), 2079. doi: 10.1039/b110787a

    3. [3]

      (3) Patterson, P.; Kyne, A.; Pourkashanian, M.; Williams, A.; Wilson, C. J. Propul. Power 2001, 17 (2), 453. doi: 10.2514/2.5764

    4. [4]

      (4) Mont mery, C. J.; Cannon, S. M.; Mawid, M. A.; Sekar, B. Reduced Chemical Kinetic Mechanisms for JP-8 Combustion. In Procedings of the 40th AIAA Aerospace Sciences Meeting and Exhibit, 40th AIAAAerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan 14-17, 2002; American Institute of Aeronautics and Astronautics: Reno, Nevada, 2002.

    5. [5]

      (5) Cathormet, M.; Voisin, D.; Etsordi, A.; Sferdean, C.; Reuillon, M.; Boettner, J. C.; Dagaut, P. Kerosene Combustion Modeling Using Detailed and Reduced Chemical Kinetic Mechanisms. In RTO Meeting Proceedings 14, Gas Turbine Engine Combustion, Emissions and Alternative Fuels, RTO AVT Symposium, Lisbon, Portugal, Oct 12-16, 1998.

    6. [6]

      (6) Honnet, S.; Seshadri, K.; Niemann, U.; Peters, N. Proc. Combust. Inst. 2009, 32 (1), 485. doi: 10.1016/j.proci.2008.06.218

    7. [7]

      (7) Fan, X. J.; Yu, G. J. Propul. Technol. 2006, 27 (2), 187. [范学军, 俞刚. 推进技术, 2006, 27 (2), 187.]

    8. [8]

      (8) Xiao, B. G.; Yang, S. H.; Zhao, H. Y.; Qian, W. Q.; Le, J. L. J. Power Sources 2010, 25 (9), 1948. [肖保国, 杨顺华, 赵慧勇, 钱炜祺, 乐嘉陵. 航空动力学报, 2010, 25 (9), 1948.]

    9. [9]

      (9) Li, J.; Shao, J. X.; Liu, C. X.; Rao, H. B.; Li, Z. R.; Li, X. Y. Acta Chim. Sin. 2010, 68 (3), 239. [李军, 邵菊香, 刘存喜, 饶含兵, 李泽荣, 李象远. 化学学报, 2010, 68 (3), 239.]

    10. [10]

      (10) Guo, J. J.; Hua, X. X.; Wang, F.; Tan, N. X.; Li, X. Y. Acta Phys. -Chim. Sin. 2014, 30 (6), 1027. [郭俊江, 华晓筱, 王繁, 谈宁馨, 李象远. 物理化学学报, 2014, 30 (6), 1027.] doi: 10.3866/PKU.WHXB201404031

    11. [11]

      (11) Hua, X. X.; Wang, J. B.; Wang, Q. D.; Tan, N. X.; Li, X. Y. Acta Phys. -Chim. Sin. 2011, 27 (12), 2755. [华晓筱, 王静波, 王全德, 谈宁馨, 李象远. 物理化学学报, 2011, 27 (12), 2755.] doi: 10.3866/PKU.WHXB20112755

    12. [12]

      (12) Guo, J. J.; Wang, J. B.; Hua, X. X.; Li, Z. R.; Tan, N. X.; Li, X. Y. Chem. Res. Chin. Univ. 2014, 30 (3), 480. doi: 10.1007/s40242-014-3460-0

    13. [13]

      (13) Tan, N. X.; Wang, J. B.; Hua, X. X.; Li, Z. R.; Li, X. Y. Chem. J. Chin. Univ. 2011, 32 (8), 1832. [谈宁馨, 王静波, 华晓筱, 李泽荣, 李象远. 高等学校化学学报, 2011, 32 (8), 1832.]

    14. [14]

      (14) Wang, H.; You, X. Q.; Joshi, A. V.; Davis, S. G.; Laskin, A.; E lfopoulos, F.; Law, C. K. USC Mech Version II. High- Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds. http://ignis.usc.edu/USC_Mech_II.htm (accessed May, 2007).

    15. [15]

      (15) Dagaut, P.; El Bakali, A.; Ristori, A. Fuel 2006, 85 (7), 944.

    16. [16]

      (16) Tang, H. C.; Zhang, C. H.; Li, P.; Wang, L. D.; Ye, B.; Li, X. Y. Acta Phys. -Chim. Sin. 2012, 28 (4), 787. [唐洪昌, 张昌华, 李萍, 王利东, 叶彬, 李象远. 物理化学学报, 2012, 28 (4), 787.] doi: 10.3866/PKU.WHXB201202161

    17. [17]

      (17) Zhang, C.; Li, B.; Rao, F.; Li, P.; Li, X. Proc. Combust. Inst. 2014, 35 (3), 3151.

    18. [18]

      (18) Chen, Z. Studies on the Initiation, Propagation, and Extinction of Premixed Flames. Ph.D. Dissertation, Princeton University: Princeton, New Jersey, 2009.

    19. [19]

      (19) Prager, J.; Najm, H. N.; Valorani, M.; ussis, D. A. Proc. Combust. Inst. 2009, 32 (1), 509. doi: 10.1016/j.proci.2008.06.074

    20. [20]

      (20) Lu, T.; Law, C. K. Proc. Combust. Inst. 2005, 30 (1), 1333. doi: 10.1016/j.proci.2004.08.145

    21. [21]

      (21) Nagy, T.; Turányi, T. Combust. Flame 2009, 156 (2), 417. doi: 10.1016/j.combustflame.2008.11.001

    22. [22]

      (22) Ren, Z.; Pope, S. B. Proc. Combust. Inst. 2005, 30 (1), 1293. doi: 10.1016/j.proci.2004.07.017

    23. [23]

      (23) Liu, A. K.; Li, S. H.; Wang, F. J. Propul. Technol. 2015, 36 (1), 142. [刘爱科, 李树豪, 王繁. 推进技术, 2015, 36 (1), 142.]

    24. [24]

      (24) Lu, T.; Law, C. K. Prog. Energ. Combust. 2009, 35 (2), 192. doi: 10.1016/j.pecs.2008.10.002

    25. [25]

      (25) Lindberg, B. BIT 1980, 20 (4), 486. doi: 10.1007/BF01933642

    26. [26]

      (26) Davenport, A; Tsang, E.; Wang, C. J.; Zhu, K. GENET: A Connectionist Architecture for Solving Constraint Satisfaction Problems by Iterative Improvement. In AAAI '94 Proceedings of the Twelfth National Cconference on Artificial Intelligence (Vol. 1), The Twelfth National Conference on Artificial Intelligence, Seattle, Washington, Jul 31-Aug 4, 1994; AAAI Press: Seattle Washington, 1994; pp 325-330.

    27. [27]

      (27) Kumar, K.; Mittal, G.; Sung, C. J.; Law, C. K. Combust. Flame 2008, 153 (3), 343. doi: 10.1016/j.combustflame.2007.11.012

    28. [28]

      (28) Metcalfe, W. K.; Burke, S. M.; Ahmed, S. S.; Curran, H. J. Int. J. Chem. Kinet. 2013, 45 (10), 638. doi: 10.1002/kin.2013.45.issue-10


  • 加载中
    1. [1]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    2. [2]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    3. [3]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    4. [4]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    5. [5]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    6. [6]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    7. [7]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    8. [8]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    9. [9]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    10. [10]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061

    11. [11]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    12. [12]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    13. [13]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    14. [14]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    15. [15]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    16. [16]

      Yiming Lu Xiang Xie Xiaoqing Qiu Yang Liu Xinyuan Cheng . The New Year’s Eve of the Aviation Brake Material Family. University Chemistry, 2024, 39(9): 203-207. doi: 10.12461/PKU.DXHX202403061

    17. [17]

      Xianyong Lu Tao Hu . Developing an Innovative Inorganic Chemistry Teaching Model Based on Aerospace Specialty Characteristics. University Chemistry, 2025, 40(7): 127-131. doi: 10.12461/PKU.DXHX202409037

    18. [18]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    19. [19]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    20. [20]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

Metrics
  • PDF Downloads(293)
  • Abstract views(750)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return