Citation: ZHANG Xiao-Ya, ZHENG Cong-Ye, ZHENG Xue-Li, FU Hai-Yan, YUAN Mao-Lin, LI Rui-Xiang, CHEN Hua. Preparation of Silica-Bonded Phosphine and Its Influence on 1-Octene Hydroformylation Catalyzed by Rhodium Complex[J]. Acta Physico-Chimica Sinica, ;2015, 31(4): 738-742. doi: 10.3866/PKU.WHXB201502063 shu

Preparation of Silica-Bonded Phosphine and Its Influence on 1-Octene Hydroformylation Catalyzed by Rhodium Complex

  • Received Date: 15 December 2014
    Available Online: 6 February 2015

    Fund Project: 中国石油天然气股份有限公司石油化工研究所(2011B-2606) (2011B-2606)四川大学青年教师科研启动基金(2011SCU11084)资助 (2011SCU11084)

  • Using silica as a support, 2-(diphenylphosphino)ethyltriethoxysilane (DPPES) was anchored on silica surface by a grafting method to produce a bonded phosphine (denoted as SiO2(PPh2)), which displays excellent performance. The supported SiO2(PPh2)/Rh catalyst was formed in situ in 1-octene hydroformylation with SiO2(PPh2) as ligand and Rh(acac)(CO)2 as precursor (acac: acetylacetone). SiO2(PPh2) and SiO2(PPh2)/ Rh were characterized by Fourier transform infrared (FTIR) spectroscopy. The effects of the ratio of phosphine to rhodium ([P]/[Rh]) and reaction temperature on 1-octene hydroformylation were investigated. Results show that an increase of the ratio of phosphine to rhodium can greatly improve the selectivity for aldehydes and decrease the rhodium leaching in organic phase. Under the moderate conditions: [P]/[Rh]=12, 363 K, 2 MPa, and 1.5 h, the conversion of 1-octene and the selectivity for aldehydes were 98.4% and 95.3%, respectively. The catalytic activity could compare with homogeneous catalysis with DPPES or triphenylphosphine (TPP) as ligand. The reaction activity was clearly unchanged after the SiO2(PPh2)/Rh catalyst was reused four times, with the conversion of 1-octene remaining at 97.0%, the rhodium content leaching in organic phase detected by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) was less than 0.1%.

  • 加载中
    1. [1]

      (1) Van Leeuwen, P.W. N. M.; Claver, C. Rhodium Catalyzed Hydroformylation; Kluwer Academic Publisher: Dordrecht, 2002; pp 1-8.

    2. [2]

      (2) Beller, M.; Cornils, B. J. Mol. Catal. A 1995, 104, 17. doi: 10.1016/1381-1169(95)00130-1

    3. [3]

      (3) Ungvary, F. Coord. Chem. Rev. 2004, 248, 867. doi: 10.1016/j.ccr.2003.02.001

    4. [4]

      (4) Jiang, H. Y.; Wu, Z. F.; Chen, H. Acta Phys. -Chim. Sin. 2013, 29 (7), 1572. [蒋和雁, 吴志峰, 陈华. 物理化学学报, 2013, 29 (7), 1572.] doi: 10.3866/PKU.WHXB201304243

    5. [5]

      (5) Zhang, L.; Hu, B.; Chen, H.; Li, X. J.; Li, R. X. Acta Phys. -Chim. Sin. 2010, 26 (9), 2422. [张磊, 胡博, 陈华, 李贤均, 李瑞祥. 物理化学学报, 2010, 26 (9), 2422.] doi: 10.3866/PKU.WHXB20100901

    6. [6]

      (6) Han, D. F.; Li, X. H.; Zhang, H. D.; Liu, Z. M.; Li, J.; Li, C. J. Catal. 2006, 243, 318. doi: 10.1016/j.jcat.2006.08.003

    7. [7]

      (7) Alini, S.; Bottino, A.; Capannelli, G.; Comite, A.; Paganelli, S. Appl. Catal. A 2005, 292, 105. doi: 10.1016/j.apcata.2005.05.048

    8. [8]

      (8) Bourque, S. C.; Alper, H.; Manzer, L. E.; Arya, P. J. Am. Chem. Soc. 2000, 122 (5), 956. doi: 10.1021/ja993196f

    9. [9]

      (9) Li, P.; Thitsartarn, W.; Kawi, S. Ind. Eng. Chem. Res. 2009, 48 (4), 1824. doi: 10.1021/ie800715k

    10. [10]

      (10) Bando, K. K.; Asakura, K.; Arakawa, H.; Isobe, K.; Iwasawa, Y. J. Phys. Chem. 1996, 100 (32), 13636. doi: 10.1021/jp953124k

    11. [11]

      (11) Kontksnen, M. L.; Tuikka, M.; Kinnunen, N. M.; Suvanto, S.; Haukka, M. Catalysis 2013, 3, 324. doi: 10.3390/catal3010324

    12. [12]

      (12) Mukhopadhyay, K.; Chaudhari, R. V. J. Catal. 2003, 213, 73. doi: 10.1016/S0021-9517(02)00020-9

    13. [13]

      (13) Li, B. T.; Li, X. H.; Asami, K.; Fujimoto, K. Energy Fuels 2003, 17 (4), 810. doi: 10.1021/ef0202440

    14. [14]

      (14) Reynhardt, J. P. K.; Yang, Y.; Sayari, A.; Alper, H. Chem. Mater. 2004, 16 (21), 4095. doi: 10.1021/cm0493142

    15. [15]

      (15) Abu-Reziq, R.; Alper, H.; Wang, D. S.; Post, M. L. J. Am. Chem. Soc. 2006, 128 (15), 5279. doi: 10.1021/ja060140u

    16. [16]

      (16) Huang, L.; Kawi, S. Catal. Lett. 2003, 90 (3-4), 165.

    17. [17]

      (17) Bourque, S. C.; Maltais, F.; Xiao, W. J.; Tardif, O.; Alper, H.; Arya, P.; Manzer, L. E. J. Am. Chem. Soc. 1999, 121 (13), 3035. doi: 10.1021/ja983764b

    18. [18]

      (18) Ichikawa, M. J. Catal. 1979, 59, 67. doi: 10.1016/S0021-9517 (79)80046-9

    19. [19]

      (19) Xu, J. Q.; Chu, W.; Luo, R. Z. J. Sichuan Univ. (Engin. Sci. Edit.) 2007, 39 (5), 70. [许俊强, 储伟, 罗仁忠. 四川大学学报(工程科学版), 2007, 39 (5), 70.]

    20. [20]

      (20) Li, P.; Kawi, S. Catal. Today 2008, 131, 61. doi: 10.1016/j.cattod.2007.10.090

    21. [21]

      (21) Zhou, W.; He, D. H. Catal. Lett. 2009, 127, 437. doi: 10.1007/s10562-008-9734-8

    22. [22]

      (22) Peng, Q. R.; Yang, Y.; Yuan, Y. Z. J. Mol. Catal. A: Chem. 2004, 219, 175. doi: 10.1016/j.molcata.2004.05.003

    23. [23]

      (23) Bonati, F.; Wilkinson, G. J. Chem. Soc. 1964, 3156.

    24. [24]

      (24) Zhao, L. Y.; Wang, S. C.; Wu, Y.; Hou, Q. F.; Wang, Y.; Jiang, S. M. J. Phys. Chem. 2007, 111 (49), 18387.

    25. [25]

      (25) Yang, Y.; Peng, Q. R.; Yuan, Y. Z. Chin. J. Catal. 2004, 25 (5), 421. [杨勇, 彭庆荣, 袁友珠. 催化学报, 2004, 25 (5), 421.]

    26. [26]

      (26) Liu, S. M.; Lin, Z. Y.; Yin, Y. Q. Acta Phys. -Chim. Sin. 1992, 8 (4), 530. [刘省明, 林政炎, 殷元骐. 物理化学学报, 1992, 8 (4), 530.] doi: 10.3866/PKU.WHXB19920421

    27. [27]

      (27) Busca, G. Catal. Today 1998, 41, 191. doi: 10.1016/S0920-5861 (98)00049-2

    28. [28]

      (28) Evans, D.; Osborn, J. A.; Wilkinson, G. J. Chem. Soc. A 1968, 3133.


  • 加载中
    1. [1]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    2. [2]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    3. [3]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    4. [4]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    5. [5]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    6. [6]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    7. [7]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    8. [8]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    9. [9]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    10. [10]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    11. [11]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    14. [14]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    15. [15]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    16. [16]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    17. [17]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    18. [18]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    19. [19]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    20. [20]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

Metrics
  • PDF Downloads(264)
  • Abstract views(551)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return