Citation: WANG Meng, PAN Xu, DAI Song-Yuan, CHEN Jian. Influence of Intermolecular Interactions on the Mesogenic Properties of Imidazolium Salts[J]. Acta Physico-Chimica Sinica, ;2015, 31(4): 653-659. doi: 10.3866/PKU.WHXB201502031 shu

Influence of Intermolecular Interactions on the Mesogenic Properties of Imidazolium Salts

  • Received Date: 21 November 2014
    Available Online: 3 February 2015

    Fund Project: 国家重点基础研究发展规划项目(973) (2011CBA00700) (973) (2011CBA00700) 国家高技术研究发展计划项目(863) (2011AA050510) (863) (2011AA050510) 国家自然科学基金(21103197,21273242) (21103197,21273242)中国博士后科学基金(2013M540526)资助 (2013M540526)

  • Aseries of imidazolium salt-based ionic liquid crystals with a smectic A(SmA) phase are synthesized by altering the substituents attached to the 1-position (N1) and 3-position (N3) of the imidazolium ring, and anions. The mesogenic properties of the imidazolium salts, including mesophase temperature range and structural properties, are studied by differential scanning calorimetry, small-angle X-ray diffraction, and single crystal diffraction. The anisotropic ion conductivities of several ionic liquid crystals are also measured. It is found that substituents attached to N1 or N3 and the anions influence the van der Waals interactions and hydrogen bond, which results in a significant effect on the mesogenic properties of the imidazolium salts. Moreover, when a vinyl group is attached to the N3 position, π-π stacking interactions form between adjacent layers. This not only benefits the formation of a mesophase but also results in the biggest layer spacing and lowest anisotropic ion conductivities for imidazolium tetrafluoroborates. These results suggest that all intermolecular interactions should be taken into account when regulating the mesogenic properties of ionic liquid crystals.

  • 加载中
    1. [1]

      (1) Binnemans, K. Chem. Rev. 2005, 105, 4148. doi: 10.1021/cr0400919

    2. [2]

      (2) Zhao, X. Y.; Cao, Y. R.; Cao, G. R.; Xiao, R. J. Acta Phys. -Chim. Sin. 2012, 28, 1411. [赵学艳, 曹宇容, 曹桂荣, 肖瑞杰. 物理化学学报, 2012, 28, 1411.] doi: 10.3866/PKU.WHXB201203262

    3. [3]

      (3) Shi, C.W.; Ge, Q.; Qiu, Z. G.; Li, B.; Han, S. K. Acta Phys. -Chim. Sin. 2007, 23, 1473. [史成武, 葛茜, 邱治国, 李兵, 韩世奎. 物理化学学报, 2007, 23, 1473.] doi: 10.3866/PKU.WHXB20070932

    4. [4]

      (4) Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Grätzel, M. J. Phys. Chem. B 2003, 107, 13280. doi: 10.1021/jp0355399

    5. [5]

      (5) Trilla, M.; Pleixats, R.; Parella, T.; Blanc, C.; Dieudonne, P.; Guari, Y.; Man, M.W. C. Langmuir 2008, 24, 259. doi: 10.1021/la702305t

    6. [6]

      (6) Yoshio, M.; Mukai, T.; Kanie, K.; Yoshizawa, M.; Ohno, H.; Kato, T. Adv. Mater. 2002, 14, 351. doi: 10.1002/1521-4095 (20020304)14:5<351::AID-ADMA351>3.0.CO;2-D

    7. [7]

      (7) Yoshio, M.; Mukai, T.; Kanie, K.; Yoshizawa, M.; Ohno, H.; Kato, T. Chem. Lett. 2002, 320.

    8. [8]

      (8) Faul, C. F. J.; Antonietti, M. Adv. Mater. 2003, 15, 673.

    9. [9]

      (9) Lee, C. K.; Huang, H.W.; Lin, I. J. B. Chem. Commun. 2000, 1911.

    10. [10]

      (10) Wang, M.; Pan, X.; Dai, S. Y. The Application of Liquid Crystal Based Electrolyte in Dye-Sensitized Solar Cells. In Proceedings of the 11th China Solar Photovoltaic Conference and Exhibition, The 11th China Solar Photovoltaic Conference and Exhibition, Nanjing, 2010;Wei, Q. D., Yuan, Z. L., Eds.; Nanjing: Southeast University Press, 2010; pp 933-940. [王猛, 潘旭, 戴松元. 离子液晶电解质在染料敏化太阳电池中的应用. 第十一届中国光伏大会即展览会会议论文集, 第十一届中国光伏大会即展览会, 南京, 2010; 魏启东, 袁竹林编; 南京: 东南大学出版社, 2010: 933-940.]

    11. [11]

      (11) Pan, X; Dai, S. Y.; Wang, K. J.; Shi, C.W.; Guo, L. Acta Phys. -Chim. Sin. 2005, 21, 697. [潘旭, 戴松元, 王孔嘉, 史成武, 郭力. 物理化学学报, 2005, 21, 697.] doi: 10.3866/PKU.WHXB20050624

    12. [12]

      (12) Lin, H.; Hao, F.; Zhang, J.; Li, J. B. J. Power Sources 2011, 196, 1645. doi: 10.1016/j.jpowsour.2010.09.013

    13. [13]

      (13) Yamanaka, N.; Kawano, R.; Kubo, W.; Kitamura, T.; Wada, Y.; Watanabe, M.; Yanagida, S. Chem. Commun. 2005, 740.

    14. [14]

      (14) Xu, F.; Matsumoto, K.; Hagiwara, R. Chem. Eur. J. 2010, 16, 12970. doi: 10.1002/chem.v16.43

    15. [15]

      (15) Yamanaka, N.; Kawano, R.; Kubo, W.; Masaki, N.; Kitamura, T.; Wada, Y.; Watanabe, M.; Yanagida, S. J. Phys. Chem. B 2007, 111, 4763. doi: 10.1021/jp0671446

    16. [16]

      (16) Luo, S. C.; Sun, S.W.; Deorukhkar, A. R.; Lu, J. T.; Bhattacharyya, A.; Lin, I. J. B. J. Mater. Chem. 2011, 21, 1866. doi: 10.1039/c0jm02875d

    17. [17]

      (17) Wang, M.; Pan, X.; Xiao, S. F.; Zhang, C. N.; Li, W. X.; Dai, S. Y. J. Mater. Chem. 2012, 22, 2299. doi: 10.1039/c1jm14790k

    18. [18]

      (18) rdon, C. M.; Holbrey, J. D.; Kennedy, A. R.; Seddon, K. R. J. Mater. Chem. 1998, 8, 2627. doi: 10.1039/a806169f

    19. [19]

      (19) Fei, Z. F.; Kuang, D. B.; Zhao, D. B.; Klein, C.; Ang, W. H.; Zakeeruddin, S. M.; Grätzel, M.; Dyson, P. J. Inorg. Chem. 2006, 45, 10407. doi: 10.1021/ic061232n

    20. [20]

      (20) Bradley, A. E.; Hardacre, C.; Holbrey, J. D.; Johnston, S.; McMath, S. E. J.; Nieuwenhuyzen, M. Chem. Mater. 2002, 14, 629. doi: 10.1021/cm010542v

    21. [21]

      (21) Hitchcock, P. B.; Seddon, K. R.; Welton, T. J. Chem. Soc. Dalton Trans. 1993, 2639.

    22. [22]

      (22) Li, L. B.; Groenewold, J.; Picken, S. J. Chem. Mater. 2005, 17, 250. doi: 10.1021/cm048811f

    23. [23]

      (23) Downard, A.; Earle, M. J.; Hardacre, C.; McMath, S. E. J.; Nieuwenhuyzen, M.; Teat, S. J. Chem. Mater. 2004, 16, 43. doi: 10.1021/cm034344a

    24. [24]

      (24) Mukai, T.; Yoshio, M.; Kato, T.; Yoshizawa, M.; Ohno, H. Chem. Commun. 2005, 1333.

    25. [25]

      (25) Bhattacharya, B.; Lee, J. Y.; Geng, J. X.; Jung, H. T.; Park, J. K. Langmuir 2009, 25, 3276. doi: 10.1021/la8029177

    26. [26]

      (26) Wang, M.; Yin, X.; Xiao, X. R.; Zhou, X.W.; Yang, Z. Z.; Li, X. P.; Lin, Y. J. Photochem. Photobiol. A: Chem. 2008, 194, 20. doi: 10.1016/j.jphotochem.2007.07.009


  • 加载中
    1. [1]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    2. [2]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    3. [3]

      Zimo YangYan TongYongbo LiuQianlong LiuZhihao NiYuna HeYu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577

    4. [4]

      Xiongbo SongJinwen XiaoJuan WuLi SunLong Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844

    5. [5]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    6. [6]

      Ruihu Wang Aidang Lu . 新型铬(VI)检测试纸的制备及应用——介绍一个应用化学综合实验. University Chemistry, 2025, 40(8): 284-290. doi: 10.12461/PKU.DXHX202410102

    7. [7]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    8. [8]

      Yanfen PENGXinyue WANGTianbao LIUXiaoshuo WUYujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018

    9. [9]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    10. [10]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    11. [11]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    12. [12]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    13. [13]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    14. [14]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    15. [15]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    16. [16]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    17. [17]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    18. [18]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    19. [19]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    20. [20]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

Metrics
  • PDF Downloads(284)
  • Abstract views(740)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return