Citation:
LIN Xing-Yi, YIN Ling, FAN Yan-Yu, CHEN Chong-Qi. Performance of Al2O3-Modified CuO/Fe2O3 Catalysts in the Water-Gas Shift Reaction[J]. Acta Physico-Chimica Sinica,
;2015, 31(4): 757-763.
doi:
10.3866/PKU.WHXB201501091
-
The water-gas shift reaction (WGSR) has been carried out over CuO/Fe2O3 catalysts modified by different loadings of Al2O3 (0%-15% (w)), prepared by a stepwise co-precipitation method. Composite mixture CuFe2O4 was produced, and the crystalline size, redox property, and surface metallic Cu dispersion were manipulated. The appropriate introduction of Al2O3 can promote the phase transition of spinel CuFe2O4 from tetra nal to cubic, inhibit aggregation of Cu-crystallite, improve Cu dispersion, and increase the amount of weak basic sites, as confirmed using powder X-ray diffraction (XRD), Raman spectroscopy, N2 physisorption, N2O decomposition, and temperature-programmed desorption of carbon dioxide (CO2-TPD) techniques. In addition, a temperature-programmed reduction of hydrogen (H2-TPR) technique was used to investigate the reducibility of the modified CuO/Fe2O3 catalysts. It was found that the Al2O3-doping plays an important role in increasing the hydrogen consumption of the copper species, and decreasing reduction temperature. This means that the Al2O3 can promote a synergistic interaction between the copper and iron species in the CuO/Fe2O3 catalysts. Overall, the Al2O3-modified catalyst (10%(w)) has a smaller Cu particle size, better Cu dispersion, greater reducibility, and larger amount of weak basic sites, resulting in a much higher initial catalytic activity and better thermal stability.
-
-
-
[1]
(1) Jacobson, M. Z.; Colella, W. G.; lden, D. M. Science 2005, 308, 1901. doi: 10.1126/science.1109157
-
[2]
(2) Spivey, J. J. Catal. Today 2005, 100, 171. doi: 10.1016/j.cattod.2004.12.011
-
[3]
(3) Maroño, M.; Sánchez, J. M.; Ruiz, E. Int. J. Hydrog. Energy 2010, 35, 37. doi: 10.1016/j.ijhydene.2009.10.078
-
[4]
(4) Tanaka, Y.; Utaka, T.; Kikuchi, R.; Sasaki, K.; Eguchi, K. Appl. Catal. A: Gen. 2003, 242, 287. doi: 10.1016/S0926-860X(02)00529-X
-
[5]
(5) Panagiotopoulou, P.; Kondarides, D. I. Catal. Today 2006, 112, 49. doi: 10.1016/j.cattod.2005.11.026
-
[6]
(6) Panagiotopoulou, P.; Christodoulakis, A.; Kondarides, D. I.; Boghosian, S. J. Catal. 2006, 240, 114. doi: 10.1016/j.jcat.2006.03.012
-
[7]
(7) Andreevaa, D.; Idakiev, V.; Tabakova, T.; Ilieva, L.; Falaras, P.; Bourlinos, A.; Travlos, A. Catal. Today 2002, 72, 51. doi: 10.1016/S0920-5861(01)00477-1
-
[8]
(8) Jacobs, G.; Williams, L.; Graham, U.; Thomas, G. A.; Sparks, D. E.; Davis, B. H. Appl. Catal. A: Gen. 2003, 252, 107. doi: 10.1016/S0926-860X(03)00410-1
-
[9]
(9) Budiman, A.; Ridwan, M.; Kim, S. M.; Choi, J.W.; Yoon, C. W.; Ha, J. M.; Suh, D. J.; Suh, Y.W. Appl. Catal. A: Gen. 2013, 462-463, 220.
-
[10]
(10) Wang, S. R.; Li, X. B.; Yin, Q. Q.; Zhu, L. J.; Luo, Z. Y. Catal. Commun. 2011, 12, 1246. doi: 10.1016/j.catcom.2011.04.019
-
[11]
(11) Lin, X. Y.; Zhang, Y.; Yin, L.; Chen, C. Q.; Zhan, Y. Y.; Li, D. L. Int. J. Hydrog. Energy 2014, 39, 6424. doi: 10.1016/j.ijhydene.2014.02.018
-
[12]
(12) Kameoka, S.; Tanabe, T.; Tsai, A. P. Catal. Lett. 2005, 100, 89. doi: 10.1007/s10562-004-3091-z
-
[13]
(13) Lin, X. Y.; Ma, J. T.; Chen, C. Q.; Zhan, Y. Y.; Zheng, Q. Acta Phys. -Chim. Sin. 2014, 30, 157. [林性贻, 马俊涛, 陈崇启, 詹瑛瑛, 郑起. 物理化学学报, 2014, 30, 157.] doi: 10.3866/PKU.WHXB201311271
-
[14]
(14) Du, X.; Yuan, Z. S.; Cao, L.; Zhang, C. X.; Wang, S. D. Fuel Process Technol. 2008, 89, 131. doi: 10.1016/j.fuproc.2007.07.002
-
[15]
(15) Ayastuy, J. L.; Fernández-Puertas, E.; nzález-Marcos, M. P.; Gutiérrez-Ortiz, M. A. Int. J. Hydrog. Energy 2012, 37, 7385. doi: 10.1016/j.ijhydene.2012.02.007
-
[16]
(16) Li, L.; Zhan, Y. Y.; Zheng, Q.; Zheng, Y. H.; Lin, X. Y.; Li, D. L.; Zhu, J. J. Catal. Lett. 2007, 118, 91. doi: 10.1007/s10562- 007-9155-0
-
[17]
(17) Dandekar, A.; Vannice, M. A. J. Catal. 1998, 178, 621. doi: 10.1006/jcat.1998.2190
-
[18]
(18) Faungnawakij, K.; Shimoda, N.; Fukunaga, T.; Kikuchi, R.; Eguchi, K. Appl. Catal. B: Environ. 2009, 92, 341. doi: 10.1016/j.apcatb.2009.08.013
-
[19]
(19) de Faria, D. L. A.; Venâncio S. S.; de Oliveira, M. T. J. Raman Spectrosc. 1997, 28, 873.
-
[20]
(20) Martin, T. P.; Merlin, R.; Huffman, D. R.; Cardona, M. Solid State Commun. 1977, 565.
-
[21]
(21) Liu, Y.; Zhang, Y.; Feng, J. D.; Li, C. F.; Shi, J.; Xiong, R. J. Exp. Nanosci. 2009, 4, 159. doi: 10.1080/17458080902929895
-
[22]
(22) Reddy, G. K.; Gunasekera, K.; Boolchand, P.; Dong, J. H.; Smirniotis, P. G. J. Phys. Chem. C 2011, 115, 7586. doi: 10.1021/jp2003084
-
[23]
(23) Xu, J. F.; Ji, W.; Shen, Z. X.; Tang, S. H. J. Solid State Chem. 1999, 147, 516. doi: 10.1006/jssc.1999.8409
-
[24]
(24) Sing, K. S.W.; Everett, D. H.; Haul, R. A.W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603.
-
[25]
(25) Kruk, M.; Jaroniec, M. Chem. Mater. 2001, 13, 3169. doi: 10.1021/cm0101069
-
[26]
(26) Jensen, J. R.; Johannessen, T.; Livbjerg, H. Appl. Catal. A: Gen. 2004, 266, 117. doi: 10.1016/j.apcata.2004.02.009
-
[27]
(27) Wang, S. R.; Guo, W.W.; Wang, H. X.; Zhu, L. J.; Yin, S.; Qiu, K. Z. New J. Chem. 2014, 38, 2792. doi: 10.1039/c4nj00134f
-
[28]
(28) Chen, C. Q.; Ruan, C. X.; Zhan, Y. Y.; Lin, X. Y.; Zheng, Q.; Wei, K. M. Int. J. Hydrog. Energy 2014, 39, 317. doi: 10.1016/j.ijhydene.2013.10.074
-
[29]
(29) Zhu, Y. Y.; Wang, S. R.; Zhu, L. J.; Ge, X. L.; Li, X. B.; Luo, Z. Y. Catal. Lett. 2010, 135, 275. doi: 10.1007/s10562-010-0298-z
-
[30]
(30) Zhu, X. L.; Shen, M.; Lobban, L. L.; Mallinson, R. G. J. Catal. 2011, 278, 123. doi: 10.1016/j.jcat.2010.11.023
-
[31]
(31) Lin, X. Y.; Chen, C. Q.; Ma, J. T.; Fang, X.; Zhan, Y. Y.; Zheng, Q. Int. J. Hydrog. Energy 2013, 38, 11847. doi: 10.1016/j.ijhydene.2013.07.001
-
[32]
(32) Li, L.; Song, L.; Wang, H. D.; Chen, C. Q.; She, Y. S.; Zhan, Y. Y.; Lin, X. Y.; Zheng, Q. Int. J. Hydrog. Energy 2011, 36, 8839. doi: 10.1016/j.ijhydene.2011.04.137
-
[33]
(33) Khan, A.; Smirniotis, P. G. J. Mol. Catal. A: Chem. 2008, 280, 43. doi: 10.1016/j.molcata.2007.10.022
-
[34]
(34) Estrella, M.; Barrio, L.; Zhou, G.; Wang, X. Q.; Wang, Q.; Wen, W.; Hanson, J. C.; Frenkel, A. I.; Rodriguez, J. A. J. Phys. Chem. C 2009, 113, 14411.
-
[35]
(35) Tabakova, T.; Idakiev, V.; Av uropoulos, G.; Papavasiliou, J.; Manzoli, M.; Boccuzzi, F.; Ioannides, T. Appl. Catal. A: Gen. 2013, 451, 184. doi: 10.1016/j.apcata.2012.11.025
-
[1]
-
-
-
[1]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054
-
[2]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[3]
Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
-
[4]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
-
[5]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[6]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[7]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021
-
[8]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005
-
[9]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007
-
[10]
Dong-Xue Jiao , Hui-Li Zhang , Chao He , Si-Yu Chen , Ke Wang , Xiao-Han Zhang , Li Wei , Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304
-
[11]
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
-
[12]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[13]
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
-
[14]
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
-
[15]
Wencheng Fang , Dong Liu , Ying Zhang , Hao Feng , Qiang Li . Improved Photoelectrochemical Performance by Polyoxometalate-Modified CuBi2O4/Mg-CuBi2O4 Homojunction Photocathode. Acta Physico-Chimica Sinica, 2024, 40(2): 2304006-0. doi: 10.3866/PKU.WHXB202304006
-
[16]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[17]
Zhinan GUO , Junli WANG , Qiang ZHAO , Zhifang JIA , Zuopeng LI , Kewei WANG , Yong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403
-
[18]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
-
[19]
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
-
[20]
Yixia Zhang , Caili Xue , Yunpeng Zhang , Qi Zhang , Kai Zhang , Yulin Liu , Zhaohui Shan , Wu Qiu , Gang Chen , Na Li , Hulin Zhang , Jiang Zhao , Da-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196
-
[1]
Metrics
- PDF Downloads(1474)
- Abstract views(951)
- HTML views(35)