Citation: CAO Chao-Tun, WEI Bai-Ying, CAO Chen-Zhong. Effect of Substituents on the NMR and UV Spectra of N-(4-substituted benzylidene) Anilines and N-(4-substituted benzylidene) Cyclohexylamines[J]. Acta Physico-Chimica Sinica, ;2015, 31(2): 204-210. doi: 10.3866/PKU.WHXB201412191 shu

Effect of Substituents on the NMR and UV Spectra of N-(4-substituted benzylidene) Anilines and N-(4-substituted benzylidene) Cyclohexylamines

  • Received Date: 24 September 2014
    Available Online: 19 December 2014

    Fund Project: 国家自然科学基金(21272063, 21072053) (21272063, 21072053)湖南省自然科学基金(14JJ3112)项目资助 (14JJ3112)

  • Two series of compounds: N-(4-substituted benzylidene) anilines (1) and N-(4-substituted benzylidene) cyclohexylamines (2) were synthesized. Their 13C NMR and 1H NMR chemical shifts and their UV absorption spectra were obtained. Compounds (1) and (2) were compared quantitatively to determine the effect of the substituents on the 13C NMR chemical shifts δC(C=N) and the 1H NMR chemical shifts δH of the CH=N bond, and the UV absorption maximum wavelength energies vmax. Our results show that the substituents affect compounds (1) and (2) differently despite them having a similar molecular skeleton. These effects are: (i) a substituent specific cross-interaction effect (Δσ2) that significantly affects the δC(C=N), δH, and vmax of compounds (1) while its effect on the corresponding properties of compounds (2) is limited, (ii) for compounds (1) and compounds (2) the field/induced effect σF and the conjugation effect σR of the substituents negatively affect δC(C=N). However, they positively influence δH and thus both σF and σR showopposite behavior toward δC(C=N) compared with δH. In contrast the field/induced effect greatly affects the δC(C=N) of both (1) and (2) but does not affect their δH, (iii) the regular change in δC(C=N), δH, and the vmax of (1) as well as (2) can be expressed by a general equation in which the effect of the phenyl group attached to the N atom of the CH=N bond can be expressed by a dummy parameter I. The phenyl group has a constant contribution toward these three properties.

  • 加载中
    1. [1]

      (1) Cao, C.; Chen, G.; Yin, Z. J. Phys. Org. Chem. 2008, 21 (9), 808. doi: 10.1002/poc.v21:9

    2. [2]

      (2) Chen, G.; Cao, C. Chin. J. Chem. Phys. 2009, 22 (4), 366. doi: 10.1088/1674-0068/22/04/366-370

    3. [3]

      (3) Chen, G.; Cao, C. J. Phys. Org. Chem. 2010, 23 (8), 776.

    4. [4]

      (4) Cao, C.; Chen, G.;Wu, Y. Sci. China Chem. 2011, 54 (11), 1735. doi: 10.1007/s11426-011-4379-7

    5. [5]

      (5) Cao, C.; Sheng, B.; Chen, C. J. Phys. Org. Chem. 2012, 25 (12), 1315. doi: 10.1002/poc.v25.12

    6. [6]

      (6) Cao, C.; Zhu, Y.; Chen, G. J. Phys. Org. Chem. 2013, 26 (10), 834. doi: 10.1002/poc.v26.10

    7. [7]

      (7) Chen, G.; Cao, C.; Lu, B.; Sheng, B. J. Phys. Org. Chem. 2012, 25 (4), 327. doi: 10.1002/poc.v25.4

    8. [8]

      (8) Cao, C.; Fang, Z. Spectrochim. Acta A 2013, 111, 62. doi: 10.1016/j.saa.2013.03.082

    9. [9]

      (9) Li, F. Y.; Zheng, J.; Liu, T. T.; Jin, L. P.; Zhao, X. S.; Guo, J. Q. Acta Phys. -Chim. Sin. 2000, 16, 787. [李富友, 郑杰, 柳汀汀, 金林培, 赵新生, 郭建权. 物理化学学报, 2000, 16, 787.] doi: 10.3866/PKU.WHXB20000906

    10. [10]

      (10) Neuvonen, H.; Neuvonen, K.; Fülöp, F. J. Org. Chem. 2006, 71, 3141. doi: 10.1021/jo0600508

    11. [11]

      (11) Chen, G.; Cao, C.; Sheng, B.; Zhu, Y.;Wu, Z.;Wu, X. J. Phys. Org. Chem. 2012, 25 (10), 828. doi: 10.1002/poc.v25.10

    12. [12]

      (12) Chen, G.; Cao, C.; Zhu, Y.;Wu, Z.;Wu, X. Spectrochim. Acta A 2012, 99, 218. doi: 10.1016/j.saa.2012.09.028

    13. [13]

      (13) Fang, Z.; Cao, C.; Chen, G. J. Phys. Org. Chem. 2012, 25 (12), 1343. doi: 10.1002/poc.v25.12

    14. [14]

      (14) Fang, Z.; Cao, C. J. Mol. Struct. 2013, 1036, 447. doi: 10.1016/j.molstruc.2012.12.014

    15. [15]

      (15) Fang, Z.; Cao, C.;Wu,W.;Wang, L. J. Phys. Org. Chem. 2013, 26, 249. doi: 10.1002/poc.v26.3

    16. [16]

      (16) Cao, C.; Lu, B.; Chen, G. J. Phys. Org. Chem. 2011, 24 (4), 335. doi: 10.1002/poc.1760

    17. [17]

      (17) Schmeyers, J.; Toda, F.; Boy, J.; Kaupp, G. J. Chem. Soc. Perkin Trans 2 1998, 989.

    18. [18]

      (18) Lu, B. Substituent Effect on the Spectra and Molecular Configuration of 4,4′ -Disubstituted N-benzylidenebenzenamine Derivatives. Master Dissertation, Hunan University of Science and Technology, Hunan, 2011. [卢冰涛. 取代基效应对4,4′ -二取代氮苄叉苯胺衍生物光谱性能及分子构型的影响[D]. 湖南: 湖南科技大学, 2011.]

    19. [19]

      (19) Keglevich, G.; Kiss, N. Z.; Menyhárd, D. K.; Fehérvári, A.; Csontos, I. Heteroatom Chem. 2012, 23 (2), 171. doi: 10.1002/hc.v23.2

    20. [20]

      (20) Cao, C.;Wu, Y. Sci. China Chem. 2013, 56 (7), 883. doi: 10.1007/s11426-013-4890-0

    21. [21]

      (21) Hansch, C.; Leo, A.; Taft, R.W. Chem. Rev. 1991, 91, 165. doi: 10.1021/cr00002a004

    22. [22]

      (22) Jiang, X. K.; Zhang, J. S. Aggregation and Self-Coling of Organic Molecules; Shanghai Science and Technology Press: Shanghai, 1996; pp 94-112. [蒋锡夔, 张劲松. 有机分子的簇集和自卷. 上海: 上海科学技术出版社, 1996: 94-112.]

    23. [23]

      (23) Cao, C. Z.; Chen, G. F.;Wu, Y. X. Sci. Sin. Chim. 2012, 42 (2), 127. [曹晨忠, 陈冠凡, 武亚新. 中国科学: 化学, 2012, 42 (2), 127.] doi: 10.1007/s11426-011-4379-7

    24. [24]

      (24) Shetty, A. S.; Zhang, J.; Moore, J. S. J. Am. Chem. Soc. 1996, 118, 1019. doi: 10.1021/ja9528893

    25. [25]

      (25) Jones, G., II; Vullev, V. I. J. Phys. Chem. A 2001, 105, 6402. doi: 10.1021/jp010087q

    26. [26]

      (26) Venkataramana, G.; Sankararaman, S. Org. Lett. 2006, 8 (13), 2739. doi: 10.1021/ol060767h

    27. [27]

      (27) on, P.; Das, S.; Clemett, C. J.; Tiddy, G. J. T.; Kumar, V. V. Langmuir 1997, 13, 5577. doi: 10.1021/la970502z

    28. [28]

      (28) Luca, G. D.; Romeo, A.; Scolaro, L. M. J. Phys. Chem. B 2005, 109, 7149. doi: 10.1021/jp0448797


  • 加载中
    1. [1]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    2. [2]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    3. [3]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    4. [4]

      Haiyang Jin Yonghai Hui Yongfei Zhang Lijun Gao Yun Wang . Application and Exploration of Nuclear Magnetic Resonance Spectrometer in Undergraduate Basic Laboratory Teaching. University Chemistry, 2025, 40(3): 245-250. doi: 10.12461/PKU.DXHX202406022

    5. [5]

      Haolin ZhanQiyuan FangJiawei LiuXiaoqi ShiXinyu ChenYuqing HuangZhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Network. Acta Physico-Chimica Sinica, 2025, 41(2): 2310045-0. doi: 10.3866/PKU.WHXB202310045

    6. [6]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    7. [7]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    8. [8]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    9. [9]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    10. [10]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    11. [11]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    12. [12]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    13. [13]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    14. [14]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    16. [16]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    17. [17]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    18. [18]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    19. [19]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    20. [20]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

Metrics
  • PDF Downloads(372)
  • Abstract views(827)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return