Citation: ZHU Chang-Li, WANG Wen-Yong, TIAN Dong-Mei, WANG Jiao, QIU Yong-Qing. Second-Order Nonlinear Optical Properties of Bis-Cyclometalated Iridium(Ⅲ) Isocyanide Complexes[J]. Acta Physico-Chimica Sinica, ;2015, 31(2): 245-252. doi: 10.3866/PKU.WHXB201412181 shu

Second-Order Nonlinear Optical Properties of Bis-Cyclometalated Iridium(Ⅲ) Isocyanide Complexes

  • Received Date: 20 October 2014
    Available Online: 18 December 2014

    Fund Project: 国家自然科学基金(21173035)资助项目 (21173035)

  • The second-order nonlinear optical (NLO) properties of bis-cyclometalated iridium(Ⅲ) isocyanide complexes were investigated by density functional theory (DFT). In this work, the geometries of the complexes were optimized using the B3PW91(UB3PW91) functional and they were found to be in od agreement with experimental data. The 6-31G* basis set was used for the non-metal elements while the LANL2DZ basis set was used for iridium. From the optimized geometries the total first hyperpolarizabilities (βtot) of the complexes were calculated by the B3PW91(UB3PW91) and B3LYP(UB3LYP) functionals. Because the polarization and diffuse function may have a nontrivial effect on the calculation of the first hyperpolarizabiliy the more flexible and polarized 6-31+G* non-metal atom basis sets and the LANL2DZ basis set for iridium were used. The absorption spectra of all the complexes were calculated at the CAM-B3LYP(UCAM-B3LYP)/6-31+G** (LANL2DZ iridium atom) level in acetonitrile to obtain a deeper insight into the second-order NLO properties of these complexes. The results indicate that the second-order NLO response is not strongly affected by different substituents, while the redox reaction plays an important role in improving the second-order NLO response and this comes from a change in the charge transfer pattern and an increase in the degree of charge transfer. The βtot values of the one-electron oxidized/reduced species (1a2+/1a)(complexes cyclometalated with N-arylazolesand alkyl isocyanides, [(CN)2Ir(CNR)2]+ (R=CH3)) are 75 and 144 times larger than that of the eigenstate complex (1a+), respectively. Therefore, the redox reaction of the cationic bis-cyclometalated iridium isocyanide complexes can effectively tune the second-order NLO properties.

  • 加载中
    1. [1]

      (1) Nalwa, H. S. Appl. Organomet. Chem. 1991, 5, 349.

    2. [2]

      (2) Zhao, X. X.; Ma, J. P.; Dong, Y. B.; Huang, R. Q.; Lai, T. S. Cryst. Growth Des. 2007, 7, 1058. doi: 10.1021/cg060583+

    3. [3]

      (3) Scarpaci, A.; Monnereau, C.; Hergué, N.; Blart, E.; Le upy, S.; Odobel, F.; rfo, A.; Pérez Moreno, J.; Clays, K.; Asselberghs, I. Dalton Trans. 2009, No. 23, 4358.

    4. [4]

      (4) Coe, B. J.; Harris, J. A.; Jones, L. A.; Brunschwig, B. S.; Song, K.; Clays, K.; Garín, J.; Orduna, J.; Coles, S. J.; Hursthouse, M. B. J. Am. Chem. Soc. 2005, 127, 4845. doi: 10.1021/ja0424124

    5. [5]

      (5) Coe, B. J.; Houbrechts, S.; Asselberghs, I.; Persoons, A. Angew. Chem. Int. Edit. 1999, 38, 366.

    6. [6]

      (6) Liu, C. G.; Guan,W.; Song, P.; Yan, L. K.; Su, Z. M. Inorg. Chem. 2009, 48, 6548. doi: 10.1021/ic9004906

    7. [7]

      (7) Liu, C. G.; Qiu, Y. Q.; Sun, S. L.; Li, N.; Yang, G. C.; Su, Z. M. Chem. Phys. Lett. 2007, 443, 163. doi: 10.1016/j.cplett.2007.06.060

    8. [8]

      (8) Margeat, O.; Lacroix, P. G.; Costes, J. P.; Donnadieu, B.; Lepetit, C.; Nakatani, K. Inorg. Chem. 2004, 43, 4743. doi: 10.1021/ic049801j

    9. [9]

      (9) Di Bella, S. Chem. Soc. Rev. 2001, 30, 355. doi: 10.1039/b100820j

    10. [10]

      (10) Sun, J.; Sun, X. X.; Sun, S. L.; Qiu, Y. Q.; Li, C. B. Acta Phys. -Chim. Sin. 2011, 27 (10), 2297. [孙建, 孙秀欣, 孙世玲, 仇永清, 李传碧. 物理化学学报, 2011, 27 (10), 2297.] doi: 10.3866/PKU.WHXB20110938

    11. [11]

      (11) Wang,W. Y.; Ma, N. N.; Sun, S. L.; Qiu, Y. Q. Organometallics 2014, 33, 3341.

    12. [12]

      (12) Boixel, J.; Guerchais, V.; Le Bozec, H.; Jacquenmin, D.; Amar, A.; Boucekkine, A.; Colombo, A.; Dra netti, C.; Marinotto, D.; Roberto, D.; Righetto, S.; De Angelis, R. J. Am. Chem. Soc. 2014, 136, 5367. doi: 10.1021/ja4131615

    13. [13]

      (13) Di Bella, S.; Dra netti, C.; Pizzotti, M.; Roberto, D.; Tessore, F.; U , R. Top. Organomet. Chem. 2010, 28, 1.

    14. [14]

      (14) Li, X. J.; Sun, S. L.; Ma, N. N.; Sun, X. X.; Yang, G. C.; Qiu, Y. Q. J. Mol. Graph. Model. 2012, 33, 19. doi: 10.1016/j.jmgm.2011.11.002

    15. [15]

      (15) Ma, N. N.; Sun, S. L.; Liu, C. G.; Sun, X. X.; Qiu, Y. Q. J. Phys. Chem. A 2011, 115, 13564. doi: 10.1021/jp206003n

    16. [16]

      (16) Wang, C. H.; Ma, N. N.; Sun, X. X.; Sun, S. L.; Qiu, Y. Q.; Liu, P. J. J. Phys. Chem. A 2012, 116, 10496.

    17. [17]

      (17) Sun, X. X.; Liu, Y.; Zhao, H. B.; Sun, S. L.; Liu, C. G.; Qiu, Y. Q. Acta Phys. -Chim. Sin. 2011, 27 (2), 315. [孙秀欣, 刘艳, 赵海波, 孙世玲, 刘春光, 仇永清. 物理化学学报, 2011, 27 (2), 315.] doi: 10.3866/PKU.WHXB20110236

    18. [18]

      (18) Zhang, M. Y.; Ma, N. N.; Sun, S. L.; Sun, X. X.; Qiu, Y. Q.; Chen, B. J. Organomet. Chem. 2012, 718, 1. doi: 10.1016/j.jorganchem.2012.08.001

    19. [19]

      (19) Zaarour, M.; Singh, A.; Latouche, C.;Williams, J. A. G.; Ledoux Rak, I.; Zyss, J.; Boucekkine, A.; Le Bozec, H.; Guerchais, V.; Dra netti, C.; Colombo, A.; Roberto, D.; Valore, A. Inorg. Chem. 2013, 52, 7987. doi: 10.1021/ic400541e

    20. [20]

      (20) Shavaleev, N. M.; Monti, F.; Scopelliti, R.; Baschieri, A.; Sambri, L.; Armaroli, N.; Grätzel, M.; Nazeeruddin, M. K. Organometallics 2013, 32, 460. doi: 10.1021/om300894m

    21. [21]

      (21) Sim, F.; Chin, S.; Dupuis, M.; Rice, J. E. J. Phys. Chem. 1993, 97, 1158. doi: 10.1021/j100108a010

    22. [22]

      (22) Kanis, D. R.; Ratner, M. A.; Marks, T. J. Chem. Rev. 1994, 94, 195. doi: 10.1021/cr00025a007

    23. [23]

      (23) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.02; Gaussian Inc.:Wallingford, CT, 2009.

    24. [24]

      (24) Oudar, J. L. J. Chem. Phys. 1977, 67, 446. doi: 10.1063/1.434888

    25. [25]

      (25) Janjua, M. R. S. A.; Guan,W.; Yan, L. K; Su, Z. M.; Karim, A.; Akbar, J. Eur. J. Inorg. Chem. 2010, 2010, 3466. doi: 10.1002/ejic.v2010:22

    26. [26]

      (26) Karton, A.; Iron, M. A.; Van der Boom, M. E.; Martin, J. M. L. J. Phys. Chem. A 2005, 109, 5454.

    27. [27]

      (27) Lu, T.; Chen, F.W. Acta Chim. Sin. 2011, 69, 2393. [卢天, 陈飞武. 化学学报, 2011, 69, 2393.] doi: 10.1021/jp0443456


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    4. [4]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    5. [5]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    8. [8]

      Haiying Wei Daqing Yang Mingtao Run Guoyan Huo . Examination and Analysis on Rationality of Experimental Design: Based on Reaction of Potassium Permanganate with Potassium Bormide. University Chemistry, 2024, 39(10): 283-288. doi: 10.12461/PKU.DXHX202404068

    9. [9]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    10. [10]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    11. [11]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    12. [12]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    13. [13]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    14. [14]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    15. [15]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    16. [16]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    17. [17]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    18. [18]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    19. [19]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    20. [20]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

Metrics
  • PDF Downloads(359)
  • Abstract views(711)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return