Citation:
ZHANG Jie, ZHANG Jiang-Hao, ZHANG Chang-Bin, HE Hong. Complete Catalytic Oxidation of Ethanol over MnO2 with Different Crystal Phase Structures[J]. Acta Physico-Chimica Sinica,
;2015, 31(2): 353-359.
doi:
10.3866/PKU.WHXB201412081
-
α-MnO2, β-MnO2, γ-MnO2, and δ-MnO2 catalysts were synthesized by hydrothermal methods, and their catalytic performances towards the oxidation of ethanol were evaluated in detail. The as-synthesized MnO2 catalysts were characterized by N2 adsorption- desorption measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and H2 temperature-programmed reduction (H2-TPR). The α-MnO2 catalyst showed the best activity of the catalysts tested for the combustion of ethanol and the trend in the activity of different MnO2 catalysts towards the oxidation of ethanol was of the order α-MnO2>δ-MnO2>γ-MnO2>β-MnO2. The effect of the crystal phase structure on the activity of the MnO2 catalysts was investigated. The XRD results showed that there were differences in the crystallinities of the α-, β-, γ-, δ-MnO2 catalysts, but these differences did not have a significant effect on their catalytic performances towards the oxidation of ethanol. The BET surface areas of the α-, β-, γ-, δ-MnO2 catalysts exhibited similar tendencies to their ethanol oxidation activities, although the results of standardization calculations showed that the surface area was not the main factor affecting their catalytical activities. The XPS results showed that the lattice oxygen concentration played an important role in defining the catalytic performance of the MnO2. The α-MnO2 catalyst showed the best reducibility of all of the MnO2 catalysts tested, as determined by H2-TPR. The excellent performance of α-MnO2 was attributed to its higher lattice oxygen concentration and reducibility, which were identified as the main factors affecting the activity of the MnO2 towards the complete oxidation of ethanol.
-
-
-
[1]
(1) Amann, M.; Lutz, M. J. Hazard. Mater. 2000, 78, 41. doi: 10.1016/S0304-3894(00)00216-8
-
[2]
(2) Grosjean, D.; Grosjean, E.; Gertler, A.W. Environ. Sci. Technol. 2001, 35, 45. doi: 10.1021/es001326a
-
[3]
(3) Jacobson, M. Z. Environ. Sci. Technol. 2007, 41, 4150. doi: 10.1021/es062085v
-
[4]
(4) Av uropoulos, G.; Oikonomopoulos, E.; Kanistras, D.; Ioannides, T. Appl. Catal. B: Environ. 2006, 65, 62. doi: 10.1016/j.apcatb.2005.12.016
-
[5]
(5) Cordi, E. M.; Falconer, J. L. J. Catal. 1996, 162, 104. doi: 10.1006/jcat.1996.0264
-
[6]
(6) Mitsui, T.; Tsutsui, K.; Matsui, T.; Kikuchi, R.; Eguchi, K. Appl. Catal. B: Environ. 2008, 81, 56. doi: 10.1016/j.apcatb.2007.12.006
-
[7]
(7) Idriss, H.; Seebauer, E. G. J. Mol. Catal. A 2000, 152, 201. doi: 10.1016/S1381-1169(99)00297-6
-
[8]
(8) Li, H. J.; Tana; Zhang, X. J.; Huang, X. M.; ShenW. J. Catal. Commun. 2011, 12, 1361. doi: 10.1016/j.catcom.2011.05.016
-
[9]
(9) Ye, Q.; Gao, Q.; Zhang, X. R.; Xu, B. Q. Catal. Commun. 2006, 7, 589. doi: 10.1016/j.catcom.2006.01.023
-
[10]
(10) Wang, R. H.; Li, J. H. Environ. Sci. Technol. 2010, 44, 4282. doi: 10.1021/es100253c
-
[11]
(11) Zhao, P.;Wang, C. N.; He, F.; Liu, S. T. RSC Adv. 2014, 4, 45665. doi: 10.1039/C4RA07843H
-
[12]
(12) Liang, S. H.; Teng, F.; Yao,W. Q.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2008, 24, 205. [梁淑惠, 滕飞, 姚文清, 朱永法. 物理化学学报, 2008, 24, 205.] doi: 10.3866/PKU.WHXB20080205
-
[13]
(13) Li, J.W.; Zhao, P.; Liu, S. T. Appl. Catal. A: Gen. 2014, 482, 363. doi: 10.1016/j.apcata.2014.06.013
-
[14]
(14) Tang, X. F.; Li, Y. G.; Huang, X. M.; Xu, Y. D.; Zhu, H. Q.; Wang, J. G.; Shen,W. J. Appl. Catal. B: Environ. 2006, 62, 265. doi: 10.1016/j.apcatb.2005.08.004
-
[15]
(15) Morales, M. R.; Barbero, B. P.; Cadús, L. E. Appl. Catal. B: Environ. 2007, 74, 1. doi: 10.1016/j.apcatb.2007.01.008
-
[16]
(16) Njagi, E. C.; Chen, C. H.; Genuino, H.; Galindo, H.; Huang, H.; Suib, S. L. Appl Catal. B: Environ, 2010, 99, 103. doi: 10.1016/j.apcatb.2010.06.006
-
[17]
(17) Luo, J.; Zhang, Q. H.; Garcia-Martin z, J.; Suib, S. L. J. Am. Chem. Soc. 2008, 130, 3198. doi: 10.1021/ja077706e
-
[18]
(18) Ye, Q.; Zhao, J. S.; Huo, F. F.;Wang, D.; Cheng, S. Y.; Kang, T. F.; Dai, H. X. Microporous Mesoporous Mat. 2013, 172, 20. doi: 10.1016/j.micromeso.2013.01.007
-
[19]
(19) Wu, X. Q.; Zong, R. L.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2012, 28, 437. [吴小琴, 宗瑞隆, 朱永法. 物理化学学报, 2012, 28, 437.] doi: 10.3866/PKU.WHXB201112082
-
[20]
(20) Sui, N.; Duan, Y. Z.; Jiao, X. L.; Chen, D. R. J. Phys. Chem. C 2009, 113, 8560.
-
[21]
(21) Lin, J.; Cai, F.; Zhang, G. Y.; Yang, L. F.; Yang, J. Y.; Fang,W. P. Acta Phys. -Chim. Sin. 2013, 29, 597. [林健, 蔡钒,张国玉, 杨乐夫, 杨金玉, 方维平. 物理化学学报, 2013, 29, 597.] doi: 10.3866/PKU.WHXB201301041
-
[22]
(22) Liang, S. H.; Teng, F.; Bulgan, G.; Zong, R. L.; Zhu, Y. F. J. Phys. Chem. C 2008, 112, 5307. doi: 10.1021/jp0774995
-
[23]
(23) Xu, R.;Wang, X.;Wang, D. S.; Zhou, K. B.; Li, Y. D. J. Catal. 2006, 237, 426. doi: 10.1016/j.jcat.2005.10.026
-
[24]
(24) Dai, Y.; Li, J. H.; Peng, Y.; Tang, X. F. Acta Phys. -Chim. Sin. 2012, 28, 1771. [戴韵, 李俊华, 彭悦, 唐幸福. 物理化学学报, 2012, 28, 1771.] doi: 10.3866/PKU.WHXB201204175
-
[25]
(25) Li, J.W.; Song, C.; Liu, S. T. Acta Chim. Sin. 2012, 70, 2347. [李经纬, 宋灿, 刘善堂. 化学学报, 2012, 70, 2347.] doi: 10.6023/A12080562
-
[26]
(26) Bastos, S. S. T.; Órfão, J. J. M.; Freitas, M. M. A.; Pereira, M. F. R.; Figueiredo, J. L. Appl. Catal. B: Environ. 2009, 93, 30. doi: 10.1016/j.apcatb.2009.09.009
-
[27]
(27) Morales, M. R.; Barbero, B. P.; Cadús, L. E. Appl. Catal. B: Environ. 2006, 67, 229. doi: 10.1016/j.apcatb.2006.05.006
-
[28]
(28) Delimaris, D.; Ioannides, T. Appl. Catal. B: Environ. 2008, 84, 303. doi: 10.1016/j.apcatb.2008.04.006
-
[29]
(29) Fu, X. B.; Feng, J. Y.;Wang, H.; Ng, K. M. Catal. Commun. 2009, 10, 1844. doi: 10.1016/j.catcom.2009.06.013
-
[30]
(30) Hu, J.; Sun, K. Q.; He, D. P.; Xu, B. Q. Chin. J. Catal. 2007, 28, 1025. [胡敬, 孙科强, 何代平, 徐柏庆. 催化学报, 2007, 28, 1025.] doi: 10.1016/S1872-2067(08)60001-7
-
[31]
(31) Ye, Q.; Huo, F. F.; Yan, L. N.;Wang, J.; Cheng, S. Y.; Kang, T.F. Acta Phys. -Chim. Sin. 2011, 27, 2872. [叶青, 霍飞飞, 闫立娜, 王娟, 程水源, 康天放. 物理化学学报, 2011, 27, 2872.] doi: 10.3866/PKU.WHXB20112872
-
[32]
(32) Dai, Y.;Wang, X. Y.; Li, D.; Dai, Q. G. J. Hazard. Mater. 2011, 188, 132. doi: 10.1016/j.jhazmat.2011.01.084
-
[33]
(33) Liu, J.; Makwana, V.; Cai, J.; Suib, S. L.; Aindow, M. J. Phys. Chem. B 2003, 107, 9185. doi: 10.1021/jp0300593
-
[1]
-
-
-
[1]
Lijun Yue , Siya Liu , Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005
-
[2]
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -. -
[3]
Wang Wang , Yucheng Liu , Shengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059
-
[4]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[5]
Jingping Li , Suding Yan , Jiaxi Wu , Qiang Cheng , Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104
-
[6]
Shuang Cao , Bo Zhong , Chuanbiao Bie , Bei Cheng , Feiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016
-
[7]
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023
-
[8]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[9]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
-
[10]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[11]
Qing Li , Guangxun Zhang , Yuxia Xu , Yangyang Sun , Huan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045
-
[12]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067
-
[13]
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
-
[14]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[15]
Shijie Ren , Mingze Gao , Rui-Ting Gao , Lei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040
-
[16]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044
-
[17]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[18]
Yinjie Xu , Suiqin Li , Lihao Liu , Jiahui He , Kai Li , Mengxin Wang , Shuying Zhao , Chun Li , Zhengbin Zhang , Xing Zhong , Jianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012
-
[19]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[20]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
-
[1]
Metrics
- PDF Downloads(428)
- Abstract views(854)
- HTML views(53)