Citation:
CHEN Hong, WANG Shi-Xian, ZHAO Wan-Long, ZHANG Neng-Neng, ZHENG Ying-Ping, SUN Yue-Ming. Preparation of Pt/TiO2 Nanofibers and Their Electrocatalytic Activity towards Methanol Oxidation[J]. Acta Physico-Chimica Sinica,
;2015, 31(2): 302-308.
doi:
10.3866/PKU.WHXB201412031
-
A Pt/TiO2 nanofiber catalyst has been prepared through the combination of an electrospinning technique with a reductive impregnation method. The compositions, morphologies and structures of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS). The results showed that the crystal phase of the TiO2 nanofibers was composed of anatase and rutile TiO2. Pt nanoparticles were found to be uniformly distributed on the surface of the TiO2 nanofibers with an average size of 4.0 nm. The mass fraction of Pt in the Pt/TiO2 nanofiber catalyst was about 20%. The electrocatalytic activities of the samples towards the oxidation of methanol were measured by cyclic voltammetry and chronoamperometry using a three-electrode system in an acidic solution. Compared with Pt/P25 and commercial Pt/C catalysts containing the same quality percentage of Pt nanoparticles, the Pt/TiO2 nanofiber catalyst exhibited higher catalytic activity towards the oxidation of methanol and better stability.
-
Keywords:
-
Electrospinning
, - TiO2 nanofiber,
- Pt nanoparticle,
- Methanol,
- Catalytic oxidation
-
-
-
-
[1]
(1) Wang, L.; Ma, J. H. Acta Phys. -Chim. Sin. 2014, 30 (7), 1267. [王丽, 马俊红. 物理化学学报, 2014, 30 (7), 1267.] doi: 10.3866/PKU.WHXB201405052
-
[2]
(2) Seiler, T.; Savinova, E. R.; Friedrich, K. A.; Stimming, U. Electrochimica Acta 2004, 49 (22), 3927.
-
[3]
(3) Léger, J. M.; Rousseau, S.; Coutanceau, C.; Hahn, F.; Lamy, C. Electrochimica Acta 2005, 50 (25), 5118.
-
[4]
(4) Ávila-García, I.; Ramírez, C.; Hallen López, J. M.; Arce Estrada E. M. J. Alloy. Compd. 2010, 495, 462. doi: 10.1016/j.jallcom.2009.10.210
-
[5]
(5) Selvaraj, V.; Alagar, M. Electrochem. Commun. 2007, 9 (5), 1145. doi: 10.1016/j.elecom.2007.01.011
-
[6]
(6) jkovi?, S. L. J. Electroanal. Chem. 2004, 573 (2), 271. doi: 10.1016/j.jelechem.2004.07.013
-
[7]
(7) Zhou, X.W.; Gan, Y. L.; Du, J. J.; Tian, D. N.; Zhang, R. H.; Yang, C. Y.; Dai, Z. X. J. Power Sources 2013, 232, 310. doi: 10.1016/j.jpowsour.2013.01.062
-
[8]
(8) Wang, C.; Markovic, N. M.; Stamenkovic, V. R. ACS Catal. 2012, 2, 891. doi: 10.1021/cs3000792
-
[9]
(9) Bing, Y.; Liu, H.; Zhang, L.; Ghosh, D.; Zhang, J. Chem. Soc. Rev. 2010, 39, 2184. doi: 10.1039/b912552c
-
[10]
(10) Zhou, X.W.; Gan, Y. L.; Sun, S. G. Acta Phys. -Chim. Sin. 2012, 28 (9), 2071. [周新文, 甘亚利, 孙世刚. 物理化学学报, 2012, 28 (9), 2071.] doi: 10.3866/PKU.WHXB201205031
-
[11]
(11) Ghosh, C. R.; Santanu, P. Chem. Rev. 2012, 112, 2373. doi: 10.1021/cr100449n
-
[12]
(12) Liu, B.; Liao, S.; Liang, Z. Prog. Chem. 2011, 23, 852.
-
[13]
(13) Lai, X.; Halperta, J. E.;Wang, D. Energy Environ. Sci. 2012, 5, 5604. doi: 10.1039/c1ee02426d
-
[14]
(14) Menzel, N.; Ortel, E.; Kraehnert, R.; Strasser, P. ChemPhysChem 2012, 13, 1385. doi: 10.1002/cphc.v13.6
-
[15]
(15) McCurry, D. A.; Kamundi, M.; Fayette, M.;Wafula, F.; Dimitrov, N. ACS Appl. Mater. Interfaces 2011, 3, 4459. doi: 10.1021/am2011433
-
[16]
(16) Ataee-Esfahani, H.; Nemoto, Y.;Wang, L.; Yamauchi, Y. Chem. Commun. 2011, 47 (13), 3885.
-
[17]
(17) Deng, Y. J.; Tian, N.; Zhou, Z. Y.; Huang, R.; Liu, Z. L.; Xiao, J.; Sun, S. G.; Chem. Sci. 2012, 3, 1157. doi: 10.1039/c2sc00723a
-
[18]
(18) Liu, H. X.; Tian, N.; Brandon, M. P.; Zhou, Z. Y.; Lin, J. L.; Hardacre, C.; Lin,W. F.; Sun, S. G. ACS Catal. 2012, 2, 708. doi: 10.1021/cs200686a
-
[19]
(19) Tian, N.; Zhou, Z. Y.; Yu, N. F.; Sun, S. G. J. Am. Chem. Soc. 2010, 132, 7580. doi: 10.1021/ja102177r
-
[20]
(20) Luo, B. M.; Yan, X. B.; Xu, S.; Xue, Q. J. Electrochimica Acta 2012, 59, 429.
-
[21]
(21) Park, K.W.; Seol, K. S. Electrochem. Commun. 2007, 9 (9), 2256. doi: 10.1016/j.elecom.2007.06.027
-
[22]
(22) Lou, X.W.; Deng, D.; Lee, J. Y.; Archer, L. A. J. Mater. Chem. 2008, 20 (20), 6562. doi: 10.1021/cm801607e
-
[23]
(23) Pang, H. L; Zhang, X. H.; Zhong, X. X.; Liu, B.;Wei, X. G.; Kuang, Y. F.; Chen, J. H. J. Colloid Interface Sci. 2008, 319 (1), 193. doi: 10.1016/j.jcis.2007.10.046
-
[24]
(24) Jayaraman, S.; Jaramillo, T. F.; Baeck, S. H.; McFarland, E.W. J. Phys. Chem. B 2005, 109 (48), 22958. doi: 10.1021/jp053053h
-
[25]
(25) Cui, Z.; Feng, L.; Liu, C.; Xing,W. J. Power Sources 2011, 196 (5), 2621. doi: 10.1016/j.jpowsour.2010.08.118
-
[26]
(26) Campos, C. L.; Roldán, C.; Aponte, M.; Ishikawa, Y.; Cabrera, C. R. J. Electroanal. Chem. 2005, 581 (2), 206. doi: 10.1016/j.jelechem.2005.04.002
-
[27]
(27) Gu, D. M.; Chu, Y. Y.;Wang, Z. B.; Jiang, Z. Z.; Yin, G. P.; Liu, Y. Appl. Catal. B 2011, 102 (1), 9.
-
[28]
(28) Neto, A. O.; Farias, L. A.; Dias, R. R.; Brandalise, M.; Linardi, M.; Spinacé, E. V. Electrochem. Commun. 2008, 10 (9), 1315. doi: 10.1016/j.elecom.2008.06.023
-
[29]
(29) Yoo, S. J.; Jeon, T. Y.; Lee, K. S.; Park, K.W.; Sung, Y. E. Chem. Commun. 2010, 46 (5), 794. doi: 10.1039/b916335b
-
[30]
(30) Murdoch, M.;Waterhouse, G. I. N.; Nadeem, M. A.; Metson, J. B.; Keane, M. A.; Howe, R. F.; Llorca, J.; Idriss, H. Nature Chem. 2011, 3 (6), 489.
-
[31]
(31) Chen, M. S.; odman, D.W. Science 2004, 306 (5694), 252. doi: 10.1126/science.1102420
-
[32]
(32) Chen, X.; Mao, S. S. Chem. Rev. 2007, 107 (7), 2891. doi: 10.1021/cr0500535
-
[33]
(33) Ma, C. A.; Yu, B.; Shi, M. Q.; Lang, X. L. Electrochemistry 2011, 17 (2), 149. [马淳安, 俞彬, 施梅勤, 郎小玲. 电化学, 2011, 17 (2), 149.]
-
[34]
(34) Abida, B.; Chirchi, L.; Baranton, S.; Napporn, T.W.; Kochkar, H.; Léger, J. M.; Ghorbe, A. Appl. Catal. B 2011, 106 (3), 609.
-
[35]
(35) Zhou, Y.; Chu, Y. Q.; Liu,W. M.; Ma, C. A. Acta Phys. -Chim. Sin. 2013, 29 (2), 287. [周阳, 褚有群, 刘委明, 马淳安.物理化学学报, 2013, 29 (2), 287.] doi: 10.3866/PKU.WHXB201211261
-
[36]
(36) Porter, J. F.; Li, Y. G.; Chan, C. K. J. Mater. Sci. 1999, 34 (7), 1523. doi: 10.1023/A:1004560129347
-
[37]
(37) Liu, X.; Chen, J.; Liu, G.; Zhang, L.; Zhang, H.; Yi, B. J. Power Sources 2010, 195 (13), 4098. doi: 10.1016/j.jpowsour.2010.01.077
-
[38]
(38) Lin, M. C. Study on the Performance of Anode Catalyst of Direct Methanol Fuel Cell. Ph. D. Dissertation, Shanghai Jiao Tong University, Shanghai, 2008. [林茂财. 直接甲醇燃料电池阳极催化剂的性能研究[D]. 上海: 上海交通大学, 2008.]
-
[39]
(39) Xing, L.; Jia, J.;Wang, Y.; Zhang, B.; Dong, S. J. Int. J. Hydrog. Energy 2010, 35 (22), 12169. doi: 10.1016/j.ijhydene.2010.07.162
-
[40]
(40) Hoster, H.; Iwasita, T.; Baumgärtner. H.; Vielstich,W. Phys. Chem. Chem. Phys. 2001, 3 (3), 337. doi: 10.1039/b004895j
-
[41]
(41) Jiang, J.; Kucernak, A. J. Electroanal. Chem. 2003, 543 (2), 187. doi: 10.1016/S0022-0728(03)00046-9
-
[42]
(42) Fan, Y.; Yang, Z.; Huang, P.; Zhang, X.; Liu, Y. M. Electrochimica Acta 2013, 105, 157. doi: 10.1016/j.electacta.2013.04.158
-
[1]
-
-
-
[1]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[2]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[3]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[4]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030
-
[5]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[6]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[7]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[8]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[9]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[10]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[11]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[12]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049
-
[13]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[14]
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
-
[15]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[16]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[17]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[18]
Yu Dai , Xueting Sun , Haoyu Wu , Naizhu Li , Guoe Cheng , Xiaojin Zhang , Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052
-
[19]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[20]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[1]
Metrics
- PDF Downloads(449)
- Abstract views(624)
- HTML views(13)