Citation: CHEN Hong, WANG Shi-Xian, ZHAO Wan-Long, ZHANG Neng-Neng, ZHENG Ying-Ping, SUN Yue-Ming. Preparation of Pt/TiO2 Nanofibers and Their Electrocatalytic Activity towards Methanol Oxidation[J]. Acta Physico-Chimica Sinica, ;2015, 31(2): 302-308. doi: 10.3866/PKU.WHXB201412031 shu

Preparation of Pt/TiO2 Nanofibers and Their Electrocatalytic Activity towards Methanol Oxidation

  • Received Date: 18 September 2014
    Available Online: 3 December 2014

    Fund Project: 国家重点基础研究发展规划项目(973) (2013CB932902) (973) (2013CB932902) 国家自然科学基金(21173042) (21173042) 江苏省科技成果转化专项基金(BA2014069) (BA2014069)江苏省工业支撑项目(BE20130118)资助 (BE20130118)

  • A Pt/TiO2 nanofiber catalyst has been prepared through the combination of an electrospinning technique with a reductive impregnation method. The compositions, morphologies and structures of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS). The results showed that the crystal phase of the TiO2 nanofibers was composed of anatase and rutile TiO2. Pt nanoparticles were found to be uniformly distributed on the surface of the TiO2 nanofibers with an average size of 4.0 nm. The mass fraction of Pt in the Pt/TiO2 nanofiber catalyst was about 20%. The electrocatalytic activities of the samples towards the oxidation of methanol were measured by cyclic voltammetry and chronoamperometry using a three-electrode system in an acidic solution. Compared with Pt/P25 and commercial Pt/C catalysts containing the same quality percentage of Pt nanoparticles, the Pt/TiO2 nanofiber catalyst exhibited higher catalytic activity towards the oxidation of methanol and better stability.

  • 加载中
    1. [1]

      (1) Wang, L.; Ma, J. H. Acta Phys. -Chim. Sin. 2014, 30 (7), 1267. [王丽, 马俊红. 物理化学学报, 2014, 30 (7), 1267.] doi: 10.3866/PKU.WHXB201405052

    2. [2]

      (2) Seiler, T.; Savinova, E. R.; Friedrich, K. A.; Stimming, U. Electrochimica Acta 2004, 49 (22), 3927.

    3. [3]

      (3) Léger, J. M.; Rousseau, S.; Coutanceau, C.; Hahn, F.; Lamy, C. Electrochimica Acta 2005, 50 (25), 5118.

    4. [4]

      (4) Ávila-García, I.; Ramírez, C.; Hallen López, J. M.; Arce Estrada E. M. J. Alloy. Compd. 2010, 495, 462. doi: 10.1016/j.jallcom.2009.10.210

    5. [5]

      (5) Selvaraj, V.; Alagar, M. Electrochem. Commun. 2007, 9 (5), 1145. doi: 10.1016/j.elecom.2007.01.011

    6. [6]

      (6) jkovi?, S. L. J. Electroanal. Chem. 2004, 573 (2), 271. doi: 10.1016/j.jelechem.2004.07.013

    7. [7]

      (7) Zhou, X.W.; Gan, Y. L.; Du, J. J.; Tian, D. N.; Zhang, R. H.; Yang, C. Y.; Dai, Z. X. J. Power Sources 2013, 232, 310. doi: 10.1016/j.jpowsour.2013.01.062

    8. [8]

      (8) Wang, C.; Markovic, N. M.; Stamenkovic, V. R. ACS Catal. 2012, 2, 891. doi: 10.1021/cs3000792

    9. [9]

      (9) Bing, Y.; Liu, H.; Zhang, L.; Ghosh, D.; Zhang, J. Chem. Soc. Rev. 2010, 39, 2184. doi: 10.1039/b912552c

    10. [10]

      (10) Zhou, X.W.; Gan, Y. L.; Sun, S. G. Acta Phys. -Chim. Sin. 2012, 28 (9), 2071. [周新文, 甘亚利, 孙世刚. 物理化学学报, 2012, 28 (9), 2071.] doi: 10.3866/PKU.WHXB201205031

    11. [11]

      (11) Ghosh, C. R.; Santanu, P. Chem. Rev. 2012, 112, 2373. doi: 10.1021/cr100449n

    12. [12]

      (12) Liu, B.; Liao, S.; Liang, Z. Prog. Chem. 2011, 23, 852.

    13. [13]

      (13) Lai, X.; Halperta, J. E.;Wang, D. Energy Environ. Sci. 2012, 5, 5604. doi: 10.1039/c1ee02426d

    14. [14]

      (14) Menzel, N.; Ortel, E.; Kraehnert, R.; Strasser, P. ChemPhysChem 2012, 13, 1385. doi: 10.1002/cphc.v13.6

    15. [15]

      (15) McCurry, D. A.; Kamundi, M.; Fayette, M.;Wafula, F.; Dimitrov, N. ACS Appl. Mater. Interfaces 2011, 3, 4459. doi: 10.1021/am2011433

    16. [16]

      (16) Ataee-Esfahani, H.; Nemoto, Y.;Wang, L.; Yamauchi, Y. Chem. Commun. 2011, 47 (13), 3885.

    17. [17]

      (17) Deng, Y. J.; Tian, N.; Zhou, Z. Y.; Huang, R.; Liu, Z. L.; Xiao, J.; Sun, S. G.; Chem. Sci. 2012, 3, 1157. doi: 10.1039/c2sc00723a

    18. [18]

      (18) Liu, H. X.; Tian, N.; Brandon, M. P.; Zhou, Z. Y.; Lin, J. L.; Hardacre, C.; Lin,W. F.; Sun, S. G. ACS Catal. 2012, 2, 708. doi: 10.1021/cs200686a

    19. [19]

      (19) Tian, N.; Zhou, Z. Y.; Yu, N. F.; Sun, S. G. J. Am. Chem. Soc. 2010, 132, 7580. doi: 10.1021/ja102177r

    20. [20]

      (20) Luo, B. M.; Yan, X. B.; Xu, S.; Xue, Q. J. Electrochimica Acta 2012, 59, 429.

    21. [21]

      (21) Park, K.W.; Seol, K. S. Electrochem. Commun. 2007, 9 (9), 2256. doi: 10.1016/j.elecom.2007.06.027

    22. [22]

      (22) Lou, X.W.; Deng, D.; Lee, J. Y.; Archer, L. A. J. Mater. Chem. 2008, 20 (20), 6562. doi: 10.1021/cm801607e

    23. [23]

      (23) Pang, H. L; Zhang, X. H.; Zhong, X. X.; Liu, B.;Wei, X. G.; Kuang, Y. F.; Chen, J. H. J. Colloid Interface Sci. 2008, 319 (1), 193. doi: 10.1016/j.jcis.2007.10.046

    24. [24]

      (24) Jayaraman, S.; Jaramillo, T. F.; Baeck, S. H.; McFarland, E.W. J. Phys. Chem. B 2005, 109 (48), 22958. doi: 10.1021/jp053053h

    25. [25]

      (25) Cui, Z.; Feng, L.; Liu, C.; Xing,W. J. Power Sources 2011, 196 (5), 2621. doi: 10.1016/j.jpowsour.2010.08.118

    26. [26]

      (26) Campos, C. L.; Roldán, C.; Aponte, M.; Ishikawa, Y.; Cabrera, C. R. J. Electroanal. Chem. 2005, 581 (2), 206. doi: 10.1016/j.jelechem.2005.04.002

    27. [27]

      (27) Gu, D. M.; Chu, Y. Y.;Wang, Z. B.; Jiang, Z. Z.; Yin, G. P.; Liu, Y. Appl. Catal. B 2011, 102 (1), 9.

    28. [28]

      (28) Neto, A. O.; Farias, L. A.; Dias, R. R.; Brandalise, M.; Linardi, M.; Spinacé, E. V. Electrochem. Commun. 2008, 10 (9), 1315. doi: 10.1016/j.elecom.2008.06.023

    29. [29]

      (29) Yoo, S. J.; Jeon, T. Y.; Lee, K. S.; Park, K.W.; Sung, Y. E. Chem. Commun. 2010, 46 (5), 794. doi: 10.1039/b916335b

    30. [30]

      (30) Murdoch, M.;Waterhouse, G. I. N.; Nadeem, M. A.; Metson, J. B.; Keane, M. A.; Howe, R. F.; Llorca, J.; Idriss, H. Nature Chem. 2011, 3 (6), 489.

    31. [31]

      (31) Chen, M. S.; odman, D.W. Science 2004, 306 (5694), 252. doi: 10.1126/science.1102420

    32. [32]

      (32) Chen, X.; Mao, S. S. Chem. Rev. 2007, 107 (7), 2891. doi: 10.1021/cr0500535

    33. [33]

      (33) Ma, C. A.; Yu, B.; Shi, M. Q.; Lang, X. L. Electrochemistry 2011, 17 (2), 149. [马淳安, 俞彬, 施梅勤, 郎小玲. 电化学, 2011, 17 (2), 149.]

    34. [34]

      (34) Abida, B.; Chirchi, L.; Baranton, S.; Napporn, T.W.; Kochkar, H.; Léger, J. M.; Ghorbe, A. Appl. Catal. B 2011, 106 (3), 609.

    35. [35]

      (35) Zhou, Y.; Chu, Y. Q.; Liu,W. M.; Ma, C. A. Acta Phys. -Chim. Sin. 2013, 29 (2), 287. [周阳, 褚有群, 刘委明, 马淳安.物理化学学报, 2013, 29 (2), 287.] doi: 10.3866/PKU.WHXB201211261

    36. [36]

      (36) Porter, J. F.; Li, Y. G.; Chan, C. K. J. Mater. Sci. 1999, 34 (7), 1523. doi: 10.1023/A:1004560129347

    37. [37]

      (37) Liu, X.; Chen, J.; Liu, G.; Zhang, L.; Zhang, H.; Yi, B. J. Power Sources 2010, 195 (13), 4098. doi: 10.1016/j.jpowsour.2010.01.077

    38. [38]

      (38) Lin, M. C. Study on the Performance of Anode Catalyst of Direct Methanol Fuel Cell. Ph. D. Dissertation, Shanghai Jiao Tong University, Shanghai, 2008. [林茂财. 直接甲醇燃料电池阳极催化剂的性能研究[D]. 上海: 上海交通大学, 2008.]

    39. [39]

      (39) Xing, L.; Jia, J.;Wang, Y.; Zhang, B.; Dong, S. J. Int. J. Hydrog. Energy 2010, 35 (22), 12169. doi: 10.1016/j.ijhydene.2010.07.162

    40. [40]

      (40) Hoster, H.; Iwasita, T.; Baumgärtner. H.; Vielstich,W. Phys. Chem. Chem. Phys. 2001, 3 (3), 337. doi: 10.1039/b004895j

    41. [41]

      (41) Jiang, J.; Kucernak, A. J. Electroanal. Chem. 2003, 543 (2), 187. doi: 10.1016/S0022-0728(03)00046-9

    42. [42]

      (42) Fan, Y.; Yang, Z.; Huang, P.; Zhang, X.; Liu, Y. M. Electrochimica Acta 2013, 105, 157. doi: 10.1016/j.electacta.2013.04.158


  • 加载中
    1. [1]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    2. [2]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    3. [3]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    4. [4]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    8. [8]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    9. [9]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    13. [13]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    14. [14]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    15. [15]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    16. [16]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    17. [17]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    18. [18]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    19. [19]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    20. [20]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

Metrics
  • PDF Downloads(449)
  • Abstract views(624)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return