Citation:
QIAN Yang, XU Jiang. Properties of Zr Nanocrystalline Coating on Ti Alloy Bipolar Plates in Simulated PEMFC Environments[J]. Acta Physico-Chimica Sinica,
;2015, 31(2): 291-301.
doi:
10.3866/PKU.WHXB201411262
-
A zirconium nanocrystalline coating has been fabricated on a Ti-6A1-4V alloy bipolar plates using a double cathode glow discharge technique to improve the corrosion resistance and reduce the interfacial contact resistance in polymer electrolyte membrane fuel cells (PEMFCs). The microstructure of Zr coating was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The microstructure of the Zr coating was found to be continuous and compact; consisting of deposited and diffusion layers. The deposited layer was 30 μm thick and composed of equiaxed grains with an average grain size of around 15 nm, whereas the diffusion layer was 10 μm thick with a gradient distribution of alloying elements, which offered a smooth transition of mechanical properties that were suitable for improving the adhesion strength of the Zr coating on the Ti-6A1-4V substrate. The electrochemical behavior of the Zr coating was evaluated in 0.5 mol·L-1 H2SO4 solution containing 2 mg·L-1 of HF solution at 70 ℃ to simulate the environment found in a PEMFC. The solution was purged with H2 (simulated PEMFC anodic environment) or air (simulated PEMFC cathodic environment). The Ecorr of the deposited Zr nanocrystalline coating was much higher than that of the Ti-6A1-4V alloy in the simulated PEMFC environment. At the applied cathode (+0.6 V) potentials for PEMFCs, both the Zr nanocrystalline coating and Ti-6A1-4V alloy were in the passive region, but the passive current density of the as-deposited Zr nanocrystalline coating was four orders of magnitude lower than that of the Ti-6A1-4V alloy. At the applied anode (-0.1 V), the Zr nanocrystalline coating exhibited characteristic cathodic protection behavior. The results of electrochemical impedance spectroscopy (EIS) showed that the values of the capacitance semicircle, phase angle maximum and frequency range were larger than those of the Ti-6A1-4V alloy in the simulated PEMFC environment when the phase angle was near -80°. Moreover, the Zr nanocrystalline coating effectively improved the conductivity and hydrophobicity of the Ti-6A1- 4V alloy bipolar plate.
-
-
-
[1]
(1) Karimi, S.; Fraser, N.; Roberts, B.; Foulkes, F. R. Adv. Mater. Sci. Eng. 2012, 2012, 22.
-
[2]
(2) Feng, K.; Li, Z.; Sun, H.; Yu, L.; Cai, X.;Wu, Y.; Chu, P. K. J. Power Sources 2013, 222, 351. doi: 10.1016/j.jpowsour.2012.08.087
-
[3]
(3) Liang, P.; Xu, H. F.; Liu, M.; Lu, L.; Fu, J. Acta Phys. -Chim. Sin. 2010, 26, 595. [梁鹏, 徐洪峰, 刘明, 卢璐, 傅杰. 物理化学学报, 2010, 26, 595.] doi: 10.3866/PKU.WHXB20100329
-
[4]
(4) Wang, Y.; Northwood, D. O. J. Power Sources 2007, 165, 293. doi: 10.1016/j.jpowsour.2006.12.034
-
[5]
(5) Lai, D.; Xu, J.; Xie, Z. H.; Munroe, P. R. J. Mater. Res. 2011, 26, 3020. doi: 10.1557/jmr.2011.367
-
[6]
(6) Xu, J.; Liu, L.; Lu, X. J. Alloy. Compd. 2011, 509, 2450. doi: 10.1016/j.jallcom.2010.11.051
-
[7]
(7) Xu, J.; Xie, Z. H.; Munroe, P. Intermetallics 2011, 19, 1146. doi: 10.1016/j.intermet.2011.03.019
-
[8]
(8) Liu, L.; Xu, J.; Xie, Z. H.; Munroe, P. J. Mater. Chem. A 2013, 1, 2064. doi: 10.1039/c2ta00510g
-
[9]
(9) Wang, H.; Sweikart, M. A.; Turner, J. A. J. Power Sources 2003, 115, 243. doi: 10.1016/S0378-7753(03)00023-5
-
[10]
(10) Ito, K.; Hayashi, T.; Yokobayashi, M.; Numakura, H. Intermetallics 2004, 12, 407. doi: 10.1016/j.intermet.2003.12.009
-
[11]
(11) Ceschini, L.; Lanzoni, E.; Martini, C.; Prandstraller, D.; Sambogna, G. Wear 2008, 264, 86. doi: 10.1016/j.wear.2007.01.045
-
[12]
(12) Rauschenbach, B.; Gerlach, J.W. Cryst. Res. Technol. 2000, 35, 675.
-
[13]
(13) Du, N.; Shu,W. F.; Zhao, Q.; Chen, Q. L.;Wang, S. X. The Chinese Journal of Nonferrous Metals 2013, 23, 426. [杜楠, 舒伟发, 赵晴, 陈庆龙, 王帅星. 中国有色金属学报, 2013, 23, 426.] doi: 10.1016/S1003-6326(13)62480-2
-
[14]
(14) Tawfik, H.; Hung, Y.; Mahajan, D. J. Power Sources 2007, 163, 755. doi: 10.1016/j.jpowsour.2006.09.088
-
[15]
(15) Wang, Y.; Northwood, D. O. Electrochim. Acta 2007, 52, 6793. doi: 10.1016/j.electacta.2007.05.001
-
[16]
(16) Wang, L.; Sun, J.; Sun, J.; Lv, Y.; Li, S.; Ji, S.;Wen, Z. J. Power Sources 2012, 199, 195. doi: 10.1016/j.jpowsour.2011.10.034
-
[17]
(17) Wang, J. L.; Sun, J. C.; Tian, R. J.; Xu, J. Chinese Journal of Power Sources 2007, 31, 725. [王剑莉, 孙俊才, 田如锦, 徐靖. 电源技术, 2007, 31, 725.]
-
[18]
(18) Fekry, A. M. Electrochim. Acta 2009, 54, 3480. doi: 10.1016/j.electacta.2008.12.060
-
[19]
(19) Macdonald, D. D.; Biaggio, S. R.; Song, H. J. Electrochem. Soc. 1992, 139, 170. doi: 10.1149/1.2069165
-
[20]
(20) Macdonald, D. D. J. Electrochem. Soc. 1992, 139, 3434. doi: 10.1149/1.2069096
-
[21]
(21) Meng, G.; Li, Y.;Wang, F. Electrochim. Acta 2006, 51, 4277. doi: 10.1016/j.electacta.2005.12.015
-
[22]
(22) Yuan, L.;Wang, H. M. Electrochim. Acta 2008, 54, 421. doi: 10.1016/j.electacta.2008.07.056
-
[23]
(23) Bonnel, K.; Le Pen, C.; Pebere, N. Electrochim. Acta 1999, 44, 4259. doi: 10.1016/S0013-4686(99)00141-3
-
[24]
(24) Assis, S. L. D.;Wolynec, S.; Costa, I. Electrochim. Acta 2006, 51, 1815. doi: 10.1016/j.electacta.2005.02.121
-
[25]
(25) Fekry, A. M.; El-Sherif, R. M. Electrochim. Acta 2009, 54, 7280. doi: 10.1016/j.electacta.2009.07.047
-
[26]
(26) Li, J. F.; Zhang, Z.; Cao, F. H.; Cheng, Y. L.; Zhang, J. Q.; Cao, C. N. Acta Metall. Sin. 2003, 39, 426. [李劲风, 张昭,曹发和, 程英亮, 张鉴清, 曹楚南. 金属学报, 2003, 39, 426.]
-
[27]
(27) Cheng, X.; Li, X.; Yang, L.; Du, C. Journal of Wuhan University of Technology-Materials Science Edition 2008, 23, 574. doi: 10.1007/s11595-006-4574-0
-
[28]
(28) Potucek, R. K.; Rateick, R. G.; Birss, V. I. J. Electrochem. Soc. 2006, 153, B304.
-
[29]
(29) Brug, G. J.; Van Den Eeden, A. L. G.; Sluyters-Rehbach, M.; Sluyters, J. H. J. Electroanal. Chem. 1984, 176, 275. doi: 10.1016/S0022-0728(84)80324-1
-
[30]
(30) Igual Muñoz, A.; García Antón, J.; Guiñón, J. L.; Pérez Herranz, V. Corrosion Sci. 2007, 49, 3200. doi: 10.1016/j.corsci.2007.03.002
-
[31]
(31) Arutunow, A.; Darowicki, K. Electrochim. Acta 2008, 53, 4387. doi: 10.1016/j.electacta.2008.01.063
-
[32]
(32) Kaufmann, R.; Klewe, N. H.; Moers, H.; Pfennig, G.; Jenett, H.; Ache, H. J. Surf. Interface Anal. 1988, 11, 502.
-
[33]
(33) Balaceanu, M.; Braic, M.; Braic, V.; Vladescu, A.; Negrila, C. C. J. Optoelectron. Adv. Mater. 2005, 7, 2557.
-
[34]
(34) Wagner, C. D.; Zatko, D. A.; Raymond, R. H. Anal. Chem. 1980, 52, 1445. doi: 10.1021/ac50059a017
-
[35]
(35) Lindberg, B. J.; Hamrin, K.; Johansson, G.; Gelius, U.; Fahlman, A.; Nordling, C.; Siegbahn, K. Phys. Scr. 1970, 1, 286. doi: 10.1088/0031-8949/1/5-6/020
-
[36]
(36) Monticelli, C.; Bellosi, A.; Dal Colle, M. J. Electrochem. Soc. 2004, 151, B331.
-
[37]
(37) Weber, A. Z.; Newman, J. J. Electrochem. Soc. 2006, 153, A2205.
-
[38]
(38) Fu, Y.; Lin, G.; Hou, M.;Wu, B.; Shao, Z.; Yi, B. Int. J. Hydrog. Energy 2009, 34, 405. doi: 10.1016/j.ijhydene.2008.10.068
-
[39]
(39) Kim, J. S.; Peelen,W. H. A.; Hemmes, K.; Makkus, R. C. Corrosion Sci. 2002, 44, 635. doi: 10.1016/S0010-938X(01)00107-X
-
[1]
-
-
-
[1]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[2]
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029
-
[3]
Yixuan Wang , Canhui Zhang , Xingkun Wang , Jiarui Duan , Kecheng Tong , Shuixing Dai , Lei Chu , Minghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004
-
[4]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[5]
Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378
-
[6]
Qianli Ma , Tianbing Song , Tianle He , Xirong Zhang , Huanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106
-
[7]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[8]
Lijun Yue , Siya Liu , Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005
-
[9]
Da Wang , Xiaobin Yin , Jianfang Wu , Yaqiao Luo , Siqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029
-
[10]
Lei Shu , Zhengqing Hao , Kai Yan , Hong Wang , Lihua Zhu , Fang Chen , Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134
-
[11]
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
-
[12]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[13]
Pengyang FAN , Shan FAN , Qinjin DAI , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Xiaoxiao HUANG , Yong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339
-
[14]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[15]
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . In Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040
-
[16]
Ruonan Li , Shijie Liang , Yunhua Xu , Cuifen Zhang , Zheng Tang , Baiqiao Liu , Weiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037
-
[17]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[18]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[19]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[20]
Ying Li , Yushen Zhao , Kai Chen , Xu Liu , Tingfeng Yi , Li-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007
-
[1]
Metrics
- PDF Downloads(437)
- Abstract views(637)
- HTML views(8)