Citation: YUE Ling, HE Zi-Meng, WANG Yu-Qin, SHANG Ya-Zhuo, LIU Hong-Lai. Effect of the Surfactant C12mimBr on the Aggregation Behavior of Gemini12-2-12 at an Air/Water Interface, Investigated Using an Interfacial Dilational Rheology Method[J]. Acta Physico-Chimica Sinica, ;2014, 30(12): 2291-2299. doi: 10.3866/PKU.WHXB201410222 shu

Effect of the Surfactant C12mimBr on the Aggregation Behavior of Gemini12-2-12 at an Air/Water Interface, Investigated Using an Interfacial Dilational Rheology Method

  • Received Date: 29 September 2014
    Available Online: 22 October 2014

    Fund Project: 国家自然科学基金(21173079, 91334203, 21476072)资助项目 (21173079, 91334203, 21476072)

  • The dynamic interfacial tension, dilational rheological properties, and interfacial relaxation processes of quaternary ammonium Gemini surfactant C12-(CH2)2-C12·2Br (Gemini12-2-12) solutions and Gemini12-2-12/ ionic liquid surfactant C12mimBr mixed systems at an air/water interface were investigated using an interfacial dilational rheology method at low frequencies (0.02-0.50 Hz). The effect of the C12mimBr on the interfacial properties of the Gemini12-2-12/C12mimBr mixed systems, and the mechanism responsible for the influence of C12mimBr on the aggregation behavior of the Gemini12-2-12 at the air/water interface, are discussed here. The experimental results showed that with increasing the amount of C12mimBr, the time required to achieve interfacial adsorption equilibrium for the mixed systems was reduced, the dilational moduli and phase angle in the mixed systems decreased, and the interfacial adsorption films were inclined to become elastic. Simultaneously, the relaxation processes at the interface or near the interface changed significantly, the slow relaxation process disappeared, and a fast relaxation process dominated the properties of the interfacial films. Moreover, the contribution of the fast relaxation process increased with increasing the concentration of C12mimBr. The abovementioned changes in the interfacial properties were mainly attributed to the participation of the C12mimBr in the formation of the interface, and the competitive adsorption of the two surfactants at the air/water interface. At lower concentrations of C12mimBr, the C12mimBr molecules filled the vacancies between the Gemini12-2-12 molecules when the Gemini12-2-12 molecules were loosely arranged at the interface, and mixedadsorption films formed from C12mimBr and Gemini12-2-12 spread on the air/water interface. With increasing the concentration of C12mimBr, the alkyl chains of the Gemini12-2-12 molecules that were wrapped around each other at the air/water interface untangled, and the Gemini12-2-12 molecules underwent desorption from the interface. At the same time, C12mimBr molecules replaced Gemini12-2-12 molecules, because of their low steric hindrance and strong hydrophobic effects; ultimately, C12mimBr molecules almost entirely occupied the air/water interface.

  • 加载中
    1. [1]

      (1) Wu, S. S. Chemical World 1990, 1, 44. [吴树森. 化学世界, 1990, 1, 44.]

    2. [2]

      (2) Li, H. Z. The Chinese Journal of Process Engineering 2006, 6 (6), 991. [李洪钟. 过程工程学报, 2006, 6 (6), 991.]

    3. [3]

      (3) Richardson, R. M.; Pelton, R.; Cosgrove, T.; Zhang, J. Macromolecules 2000, 33, 6269. doi: 10.1021/ma000095p

    4. [4]

      (4) Noskov, B. A.; Alexandrov, D. A.; Loglio, G.; Miller, R. Colloids Surf. A 1999, 156, 307. doi: 10.1016/S0927-7757(99)00082-5

    5. [5]

      (5) Bonfillon, A.; Langevin, D. Langmuir 1993, 9, 2172. doi: 10.1021/la00032a045

    6. [6]

      (6) Bonfillon, A.; Langevin, D. Langmuir 1994, 10, 2965. doi: 10.1021/la00021a020

    7. [7]

      (7) Regismond, T. A.; Gracie, K. D.;Winnik, F. M.; ddard, E. D. Langmuir 1997, 13, 5558. doi: 10.1021/la9702289

    8. [8]

      (8) Babak, V. G.; Merkovich, E. A.; Galbraikh, L. S. Mendeleev Commun. 2000, 94.

    9. [9]

      (9) Babak, V. G.; Lukina, I.; Vikhoreva, G. A.; Desbrieres, J.; Rinaudo, M. Colloids Surf. A 1999, 147, 139. doi: 10.1016/S0927-7757(98)00752-3

    10. [10]

      (10) Babak, V. G.; Desbrieres, J. Colloid Polym. Sci. 2006, 284, 745. doi: 10.1007/s00396-005-1427-x

    11. [11]

      (11) Babak, V. G.; Baros, F.; Boury, F.; Desbrieres, J.; Vikhoreva, G. A. Mendeleev Commun. 2008, 18, 35. doi: 10.1016/j.mencom.2008.01.014

    12. [12]

      (12) Babak, V. G.; Auzely, R.; Rinaudo, M. J. Phys. Chem. B 2007, 111, 9519. doi: 10.1021/jp0718653

    13. [13]

      (13) Noskov, B. A.; Loglio, G.; Miller, R. J. Phys. Chem. B 2004, 108, 18615. doi: 10.1021/jp046560s

    14. [14]

      (14) Noskov, B. A.; Lin, S. Y.; Loglio, G.; Rubio, R. G.; Miller, R. Langmuir 2006, 22, 2647. doi: 10.1021/la052662d

    15. [15]

      (15) Fainerman, V. B.; Petkov, J. T.; Miller, R. Langmuir 2008, 24, 6447. doi: 10.1021/la704058y

    16. [16]

      (16) Noskov, B. A.; Gri riev, D. O.; Latnikova, A. V.; Lin, S. Y.; Loglio, G.; Miller, R. J. Phys. Chem. B 2009, 113, 13398. doi: 10.1021/jp905413q

    17. [17]

      (17) Fainerman, V. B.; Aksenenko, E. V.; Zholob, S. A.; Petkov, J. T.; Yorke, J.; Miller, R. Langmuir 2010, 26, 1796. doi: 10.1021/la9024926

    18. [18]

      (18) Fang, H. B.; Zong, H.; Mao, L. T.; Zhang, L.; Cui, G. Z.; Zhao, S.; Yu, J. Y. J. Dis. Sci. Technol. 2010, 31, 1652.

    19. [19]

      (19) Zhou, Z. H.; Zhang, L.; Xu, Z. C.; Zhao, S.; Yu, J. Y. J. Dis. Sci. Technol. 2011, 32, 95.

    20. [20]

      (20) Wang, Z. L.; Li, Z. Q.; Zhang, L.; Huang, H. Y.; Zhang, L.; Zhao, S.; Yu, J. Y. J. Chem. Eng. Data 2011, 56, 2393. doi: 10.1021/je1013312

    21. [21]

      (21) Zhang, J. C.; Zhang, L.;Wang, X. C.; Zhang, L.; Zhao, S.; Yu, J. Y. J. Dis. Sci. Technol. 2011, 32, 372. doi: 10.1080/01932691003662381

    22. [22]

      (22) Song, X.W.; Zhang, L.;Wang, X. C.; Zhang, L.; Zhao, S.; Yu, J. Y. J. Dis. Sci. Technol. 2011, 32, 247. doi: 10.1080/01932691003657001

    23. [23]

      (23) Cui, X. H.; Zhang, L.; Luo, L.; Zhang, L.; Zhao, S.; Yu, J. Y. Colloids Surf. A 2010, 369, 106. doi: 10.1016/j.colsurfa.2010.08.012

    24. [24]

      (24) Sun, H. Q.; Zhang, L.; Zhao, S.; Yu, J. Y. J. Dis. Sci. Technol. 2011, 32, 389. doi: 10.1080/01932691003662407

    25. [25]

      (25) Ma, B. D.; Zhang, L.; Gao, B. Y.; Zhao, S.; Yu, J. Y. Colloid Polym. Sci. 2011, 289, 911. doi: 10.1007/s00396-011-2415-y

    26. [26]

      (26) He, F.; Xu, G. Y.; Pang, J. Y.; Ao, M. Q.; Han, T. T.; ng, H. J. Langmuir 2011, 27, 538. doi: 10.1021/la103478c

    27. [27]

      (27) Zhu, Y. Y.; Xu, G. Y.; Xin, X.; Zhang, H. X.; Shi, X. F. J. Chem. Eng. Data 2009, 54, 989. doi: 10.1021/je800788f

    28. [28]

      (28) Che, Y. J.; Cao, J.; ng, H. J.; Xu, G. Y.; Tan, Y. B. J. Dis. Sci. Technol. 2011, 32, 174. doi: 10.1080/01932691003656698

    29. [29]

      (29) Pei, X. M.; You, Y.; Zhao, J. X.; Deng, Y. S.; Li, E. J.; Li, Z. X. J. Colloid Interface Sci. 2010, 351, 457. doi: 10.1016/j.jcis.2010.07.076

    30. [30]

      (30) You, Y.; Zhong, B. X.; Zhao, J. X. Colloid Polym. Sci. 2010, 288, 1359. doi: 10.1007/s00396-010-2265-z

    31. [31]

      (31) Zhao, J. X.; Deng, Y. S.; Pei, X. M. Colloids Surf. A 2010, 369, 34. doi: 10.1016/j.colsurfa.2010.07.027

    32. [32]

      (32) Wu, X. N.; Zhao, J. X.; Li, E. J.; Zou,W. S. Colloid Polym. Sci. 2011, 289, 1025. doi: 10.1007/s00396-011-2425-9

    33. [33]

      (33) Angle, C.W.; Hua, Y. J. Energy Fuels 2012, 26, 6228. doi: 10.1021/ef300846z

    34. [34]

      (34) Angle, C.W.; Hua, Y. J. Energy Fuels 2013, 27, 3613. doi: 10.1021/ef4003928

    35. [35]

      (35) Reichert, M. D.;Walker, L. M. Langmuir 2013, 29, 1857. doi: 10.1021/la4000395

    36. [36]

      (36) Takajo, Y.; Yamanaka, M.; Rubio, R. G.; Takiue, T.; Matsubara, H.; Aratono, M. J. Phys. Chem. C 2013, 117, 1097. doi: 10.1021/jp311283a

    37. [37]

      (37) Zana, R.; Benrraou, M.; Rueff, R. Langmuir 1991, 7, 1072. doi: 10.1021/la00054a008

    38. [38]

      (38) Lucassen, J.; Van Den Tempel, M. Chemical Engineering Science 1972, 27, 1283. doi: 10.1016/0009-2509(72)80104-0

    39. [39]

      (39) Lucassen-Reynders, E. H. Anionic Surfactants; MercelDekker: Inc.: New York, 1981, p 173.

    40. [40]

      (40) van den Tempel, M.; Lucassen-Reynders, E. H. Advances in Colloid and Interface Science 1983, 18, 281. doi: 10.1016/0001-8686(83)87004-3

    41. [41]

      (41) Wu, D.; Feng, Y. J.; Xu, G. Y.; Chen, Y. J.; Cao, X. R.; Li, Y. M. Colloids Surf. A 2007, 299, 117. doi: 10.1016/j.colsurfa.2006.11.031

    42. [42]

      (42) Zhang, L.;Wang, X. C.; Yan, F.; Luo, L.; Zhang, L.; Zhao, S.; Yu, J. Y. Colloid Polym. Sci. 2008, 286, 1291. doi: 10.1007/s00396-008-1894-y

    43. [43]

      (43) Cao, C.; Huang, T.; Zhang, L.; Du, F. P. Colloids Surf. A 2013, 436, 557. doi: 10.1016/j.colsurfa.2013.07.013

    44. [44]

      (44) Zhang, L.;Wang, X. C.; Yan, F. Colloid Polym. Sci. 2008, 286, 1291. doi: 10.1007/s00396-008-1894-y

    45. [45]

      (45) Dou, L. X.; Cheng, J. B. Chemical Journal of Chinese Universities 2010, 31 (2), 361 [窦立霞, 程建波. 高等学校化学学报, 2010, 31 (2), 361.]

    46. [46]

      (46) Zhang, C. R.; Li, Z. Q.; Luo, L.; Zhang, L.; Song, X.W.; Cao, X. L.; Zhao, S.; Yu, J. Y. Acta Phys. -Chim. Sin. 2007, 23 (2), 247. [张春荣, 李振泉, 罗澜, 张路, 宋新旺, 曹绪龙, 赵濉, 俞稼镛. 物理化学学报, 2007, 23 (2), 247.] doi: 10.3866/PKU.WHXB20070221


  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    3. [3]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    4. [4]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    5. [5]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    6. [6]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    7. [7]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    8. [8]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    9. [9]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    10. [10]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    11. [11]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    12. [12]

      Yi Fan Zhuoqi Jiang Zhipeng Li Xuan Zhou Jingan Lin Laiying Zhang Xu Hou . 偶极诱导液体门控可视化物质检测——化学“101计划”表界面性质应用实验新设计. University Chemistry, 2025, 40(8): 265-271. doi: 10.12461/PKU.DXHX202410061

    13. [13]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    14. [14]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    15. [15]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    16. [16]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    17. [17]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    18. [18]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    19. [19]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    20. [20]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023

Metrics
  • PDF Downloads(478)
  • Abstract views(662)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return