Citation:
ZHAO Qiao, LU Dan-Feng, CHEN Chen, QI Zhi-Mei. Characterization of Mesoporous Silica Film Sensitized SERS Substrates Based on Evanescent-Wave Excitation[J]. Acta Physico-Chimica Sinica,
;2014, 30(12): 2335-2341.
doi:
10.3866/PKU.WHXB201410131
-
Sol-gel copolymer templated mesoporous silica (MPS) films of ~40 nm thickness were fabricated on the 50-nm-thick ld films sputtered on glass substrates. A top monolayer of ld nanoparticles (GNPs) was subsequently self-assembled on the MPS film to form an Au/MPS/GNPmultilayer structure for surface-enhanced Raman scattering (SERS) spectroscopy based on evanescent wave excitation. The open-pore structure of the MPS films, which was conducive to the rapid diffusion of small molecules into the film, was observed by scanning electron microscopy. Simulation using finite difference time domain (FDTD) solutions indicates that the evanescent field between the Au film and GNP layer of the Au/MPS/GNP substrate can be significantly enhanced under the surface plasmon resonance (SPR) condition. Owing to the complete spatial overlap, this enhanced field enables to superefficiently excite SERS signals from small molecules adsorbed in the MPS film. Moreover, the MPS film can effectively prevent the direct metal-molecule interaction, making the SERS signal immune to the interference by the metal. The SERS effect of the Au/MPS/GNP substrate loaded with Raman-active Nile blue (NB) molecules was investigated at 785 nm excitation wavelength with the Kretschmann configuration, and the experimental results were compared with those obtained using theAu/GNP substrate.With theAu/MPS/ GNP substrate very strong Raman signals were detected on the prism and air sides, respectively, under the SPR condition. The air-side Raman peak at 586 cm-1 is 40 times as high as that with the Au/GNP substrate. This enhancement is attributed to the open-pore MPS film. The further measurements reveal a positive correlation between the air-side Raman peak intensity and the NB concentration of the solution sample, giving a sign that the Au/MPS/GNP substrate could be used for quasi-quantitative analysis.
-
-
-
[1]
(1) Craig, A. P.; Franca, A. S.; Irudayaraj, J. Aunu. Rev. Food Sci. Technol. 2013, 4, 369. doi: 10.1146/annurev-food-022811-101227
-
[2]
(2) Halvorson, R. A.; Vikesland, P. J. Environ. Sci. Technol. 2010, 44, 7749. doi: 10.1021/es101228z
-
[3]
(3) Mahajan, S.; Richardson, J.; Brown, T.; Bartlett, P. N. J. Am. Chem. Soc. 2008, 130, 15589. doi: 10.1021/ja805517q
-
[4]
(4) Xie,W.; Qiu, P. H.; Mao, C. B. J. Mater. Chem. 2011, 21 (14), 5190. doi: 10.1039/c0jm03301d
-
[5]
(5) Cai, Q.; Lu, S. K.; Liao, F.; Li, Y. Q.; Ma, S. Z.; Shao, M.W. Nanoscale 2014, 6, 8117. doi: 10.1039/c4nr01751j
-
[6]
(6) Luo,W. L.; Su, Y. Q.; Tian, X. D.; Zhao, L. B.;Wu, Y. D.; Tian, Z. Q. Acta Phys. -Chim. Sin. 2012, 28 (12), 2767. [罗文丽,苏亚琼, 田向东, 赵刘斌, 吴德印, 田中群. 物理化学学报, 2012, 28 (12), 2767.] doi: 10.3866/PKU.WHXB201209052
-
[7]
(7) Jiang, Z. L.;Wen, G. Q.; Luo, Y. H.; Zhang, X. H.; Liu, Q. Y.; Liang, A. H. Scientific Reports 2014, 4, 5323.
-
[8]
(8) Fan, F. T.; Li, C. Sci. China Chem. 2013, 43 (12), 1818. [范峰滔, 李灿. 中国科学: 化学, 2013, 43 (12), 1818.]
-
[9]
(9) Wei, H.; Xu, H. X. Nanoscale 2013, 5, 10794. doi: 10.1039/c3nr02924g
-
[10]
(10) Qin, L. D.; Zou, S. L.; Xue, C.; Atkinson, A.; Schatz, G. C.; Mirkin, C. A. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (36), 13300. doi: 10.1073/pnas.0605889103
-
[11]
(11) Le Ru, E. C.; Etche in, P. G. Annu. Rev. Phys. Chem. 2012, 63, 65. doi: 10.1146/annurev-physchem-032511-143757
-
[12]
(12) Zhao, Q.; Lu, D. F.; Liu, D. L.; Chen, C.; Hu, D. B.; Qi, Z. M. Acta Phys. -Chim. Sin. 2014, 30 (7), 1201. [赵乔, 逯丹凤,刘德龙, 陈晨, 胡德波, 祁志美. 物理化学学报, 2014, 30 (7), 1201.] doi: 10.3866/PKU.WHXB201405191
-
[13]
(13) Liu, H. L.; Yang, Z. L.; Meng, L. Y.; Sun, Y. D.;Wang, J.; Yang, L. B.; Liu, J. H.; Tian, Z. Q. J. Am. Chem. Soc. 2014, 136 (14), 5532.
-
[14]
(14) Wang, X.; Li, M. H.; Meng, L. Y.; Lin, K. Q.; Feng, J. M.; Huang, T. X.; Yang, Z. L.; Ren, B. ACS Nano 2014, 8 (1), 528. doi: 10.1021/nn405073h
-
[15]
(15) Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang,W.; Zhou, Z. Y.;Wu, D. Y.; Ren, B.; Wang, Z. L.; Tian, Z. Q. Nature 2010, 464, 392. doi: 10.1038/nature08907
-
[16]
(16) Liu, Q.; Zhang, Z.; Qi, Z. M. Chin. J. Anal. Chem. 2012, 40 (4), 556. [柳倩, 张喆, 祁志美. 分析化学, 2012, 40 (4), 556.]
-
[17]
(17) Li, J. Y.; Lu, D. F.; Zhang, Z.; Liu, Q.; Qi, Z. M. Sens. Actuator B-Chem. 2014, 203, 690. doi: 10.1016/j.snb.2014.07.033
-
[18]
(18) Yu, C. X.;Wei, Q.;Wang, Y. L.; Li, Q. Y.; Nie, Z. R.; Zou, J. X. Chin. J. Inorg. Chem. 2007, 23 (6), 957. [于春晓, 韦奇, 王艳丽, 李群艳, 聂祚仁, 邹景霞. 无机化学学报, 2007, 23 (6), 957.]
-
[19]
(19) ng,W.; Chen, S. Z.; Xu, L. J. Inst. Anal. 2012, 31 (4), 417. [龚伟, 陈少珠, 徐岚. 分析测试学报, 2012, 31 (4), 417.]
-
[20]
(20) Shen, B.;Wang, Y. A.;Wang, Z. F.; Zhang, L. Acta Phys. -Chim. Sin. 2010, 26 (7), 1860. [沈彬, 王永安, 王志飞, 张玲.物理化学学报, 2010, 26 (7), 1860.] doi: 10.3866/PKU.WHXB20100707
-
[21]
(21) Mubeen, S.; Zhang, S. P.; Kim, N.; Lee, S.; Kramer, S.; Xu, H. X.; Moskovits, M. Nano Lett. 2012, 12 (4), 2088. doi: 10.1021/nl300351j
-
[22]
(22) McKee, K. J. Scanning Angle Total Internal Reflection Raman Spectroscopy and Plasmon Enhancement Techniques as a Tool for Interfacial Analysis. Ph. D. Dissertation, Iowa State University, Ames, 2012.
-
[23]
(23) Liu, D. L.; Zhao, Q.; Lu, D. F.; Qi, Z. M. Chem. J. Chin. Univ. 2014, 35 (10), 2207. [刘德龙, 赵乔, 逯丹凤, 祁志美. 高等学校化学学报, 2014, 35 (10), 2207.]
-
[24]
(24) Meyer, S. A.; Le Ru, E. C.; Etchegiin, P. G. Anal. Chem. 2011, 83, 2337. doi: 10.1021/ac103273r
-
[25]
(25) Kretschmann, E. Z. Physics 1971, 241 (4), 313. doi: 10.1007/BF01395428
-
[1]
-
-
-
[1]
Mi Wen , Baoshuo Jia , Yongqi Chai , Tong Wang , Jianbo Liu , Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147
-
[2]
Ling Bai , Limin Lu , Xiaoqiang Wang , Dongping Wu , Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101
-
[3]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[4]
Yufan ZHAO , Jinglin YOU , Shixiang WANG , Guopeng LIU , Xiang XIA , Yingfang XIE , Meiqin SHENG , Feiyan XU , Kai TANG , Liming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063
-
[5]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[6]
Ruiqin Feng , Ye Fan , Yun Fang , Yongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020
-
[7]
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
-
[8]
Chunling Qin , Shuang Chen , Hassanien Gomaa , Mohamed A. Shenashen , Sherif A. El-Safty , Qian Liu , Cuihua An , Xijun Liu , Qibo Deng , Ning Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059
-
[9]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[10]
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
-
[11]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[12]
Cheng Zheng , Shiying Zheng , Yanping Zhang , Shoutian Zheng , Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131
-
[13]
Yajuan Xing , Hui Xue , Jing Sun , Niankun Guo , Tianshan Song , Jiawen Sun , Yi-Ru Hao , Qin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046
-
[14]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[15]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[16]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[17]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[18]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[19]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[20]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[1]
Metrics
- PDF Downloads(310)
- Abstract views(671)
- HTML views(12)