Citation: WANG Jian-De, PENG Tong-Jiang, SUN Hong-Juan, HOU Yun-Dan. Effect of the Hydrothermal Reaction Temperature on Three-Dimensional Reduced Graphene Oxide's Appearance, Structure and Super Capacitor Performance[J]. Acta Physico-Chimica Sinica, ;2014, 30(11): 2077-2084. doi: 10.3866/PKU.WHXB201409152 shu

Effect of the Hydrothermal Reaction Temperature on Three-Dimensional Reduced Graphene Oxide's Appearance, Structure and Super Capacitor Performance

  • Received Date: 28 July 2014
    Available Online: 15 September 2014

    Fund Project: 国家自然科学基金(41272051) (41272051) 西南科技大学博士基金(11ZX7135) (11ZX7135)西南科技大学研究生创新基金(14ycx003)资助项目 (14ycx003)

  • Three-dimensional reduction of graphene oxide with a series of different degrees of reduction was performed by the hydrothermal method in the temperature range from 120 to 220 ℃, with graphene oxide sols as the precursor and prepared by graphite oxide gels. The effect of the temperature of the hydrothermal reaction on the materials appearance, structure, and super capacitor performance was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements. The results show that the prepared three dimensional reduction of graphene oxide was porous and reticulated, and its volume and inner mesh aperture gradually decreased with increasing temperature, while its degree of reduction and order increased at the same time, and its structure gradually transformed to the graphite oxide structure. However, thematerials' specific capacitance and energy density showed the tendency of first increasing and then decreasing, with the electric double-layer capacitor mainly remaining. The three-dimensional reduction of graphene oxide materials at 180 ℃ resulted in the best super capacitor performance, with a specific capacitance of 315 F·g-1 when the current density was 0.5 A·g-1 and 212 F·g-1 when the current density was 10 A·g-1. Its energy density was 40.5 Wh·kg-1 and its specific capacitance was 86% after 5000 cycles, with all these properties indicating its od super capacitor performance.

  • 加载中
    1. [1]

      (1) Sarangapani, S.; Tilak, B. V.; Chen, C. P. J. Electrochem. Soc. 1996, 143 (11), 3791. doi: 10.1149/1.1837291

    2. [2]

      (2) Arbizzani, C.; Mastra stino, M.; Soavi, F. J. Power Sources 2001, 100 (1), 164.

    3. [3]

      (3) Zheng, J. P.; Jow, T. R. J. Power Sources 1996, 62 (2), 155. doi: 10.1016/S0378-7753(96)02424-X

    4. [4]

      (4) Zheng, J. P.; Jow, T. R. J. Electrochem. Soc. 1995, 142 (1), L6.

    5. [5]

      (5) Frackowiak, E. Phys. Chem. Chem. Phys. 2007, 9 (15), 1774.

    6. [6]

      (6) Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai,W.; Ferreira, P. J.; Ruoff, R. S. Science 2011, 332 (6037), 1537. doi: 10.1126/science.1200770

    7. [7]

      (7) Liu, D.; Shen, J.; Li, Y. J.; Liu, N. P.; Liu, B. Acta Phys. -Chim. Sin. 2012, 28 (4), 843. [刘冬, 沈军, 李亚捷, 刘念平, 刘斌. 物理化学学报, 2012, 28 (4), 843.] doi: 10.3866/PKU.WHXB201202172

    8. [8]

      (8) Lei, Y.; Li, J.;Wang, Y.; Gu, L.; Chang, Y.; Yuan, H.; Xiao, D. ACS Appl. Mat. Interfaces 2014, 6 (3), 1773. doi: 10.1021/am404765y

    9. [9]

      (9) Chen, L.; Li, B.; Qi, Z.; Guo, H.; Zhou, J.; Li, L. J. Electron. Mater. 2013, 42 (10), 2933.

    10. [10]

      (10) Jin, Y.; Chen, H. Y.; Chen, M. H.; Liu, N.; Li, Q.W. Acta Phys. -Chim. Sin. 2012, 28 (3), 609. [靳瑜, 陈宏源, 陈名海, 刘宁, 李清文. 物理化学学报, 2012, 28 (3), 609.] doi: 10.3866/PKU.WHXB201201162

    11. [11]

      (11) Ma, J.; Liu, Y.; Hu, Z.; Xu, Z. Solid State Ionics 2013, 19 (10), 1405.

    12. [12]

      (12) Mao, L.; Zhang, K.; Chan, H. S. O.;Wu, J. J. Mater. Chem. 2012, 22 (5), 1845. doi: 10.1039/c1jm14503g

    13. [13]

      (13) Sun, X. Z.; Zhang, X.; Zhang, D. C.; Ma, Y.W. Acta Phys. -Chim. Sin. 2012, 28 (2), 367. [孙现众, 张熊, 张大成, 马衍伟. 物理化学学报, 2012, 28 (2), 367.] doi: 10.3866/PKU.WHXB201112131

    14. [14]

      (14) Che, Q.; Zhang, F.; Zhang, X. G.; Lu, X. J.; Ding, B.; Zhu, J. J. Acta Phys. -Chim. Sin. 2012, 28 (4), 837. [车倩, 张方, 张校刚, 卢向军, 丁兵, 朱佳佳. 物理化学学报, 2012, 28 (4), 837.] doi: 10.3866/PKU.WHXB201202074

    15. [15]

      (15) Niu, Z. Q.; Liu, L. L.; Zhang, L.; Shao, Q.; Zhou,W. Y.; Chen, X. D.; Xie, S. S. Adv. Mater. 2014, 26 (22), 3681. doi: 10.1002/adma.v26.22

    16. [16]

      (16) Novoselo, V. K. S.; Geim, A. K.; Morozo, V. S. V. Science 2004, 306, 666. doi: 10.1126/science.1102896

    17. [17]

      (17) Kane, C. L. Nature 2005, 438 (7065), 168. doi: 10.1038/438168a

    18. [18]

      (18) Stoller, M. D.; Park, S. J.; Zhu, Y.; An, J.; Ruoff, R. S. Nano Lett. 2008, 8 (10), 3498. doi: 10.1021/nl802558y

    19. [19]

      (19) Vivekchand, S. R. C.; Rout, C. S.; Subrahmanyam, K. S.; vindaraj, A.; Rao, C. N. R. Chem. Sci. 2008, 120 (1), 9. doi: 10.1007/s12039-008-0002-7

    20. [20]

      (20) Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.;Wang, C.; Chen, M.; Chen, Y. J. Phys. Chem. C 2009, 113 (30), 13103. doi: 10.1021/jp902214f

    21. [21]

      (21) Ye, J.; Zhang, H. Y.; Chen, Y. M.; Cheng, Z. D.; Hu, L.; Ran, Q. Y. J. Power Sources 2012, 212, 105. doi: 10.1016/j.jpowsour.2012.03.101

    22. [22]

      (22) Lv,W.; Tang, D. M.; He, Y. B.; You, C. H.; Shi, Z. Q.; Chen, X. C. ACS Nano 2009, 3 (11), 3730. doi: 10.1021/nn900933u

    23. [23]

      (23) Shen, B.; Lu, D.; Zhai,W.; Zheng,W. J. Phys. Chem. C 2013, 1 (1), 50.

    24. [24]

      (24) Xu, Y.; Lin, Z.; Huang, X.;Wang, Y.; Huang, Y.; Duan, X. Adv. Mater. 2013, 25 (40), 5779. doi: 10.1002/adma.v25.40

    25. [25]

      (25) Bi, H.; Yin, K.; Xie, X.; Zhou, Y.;Wan, N.; Xu, F.; Banhart, F.; Sun, L.; Ruoff, R. S. Adv. Mater. 2012, 24, 5124. doi: 10.1002/adma.201201519

    26. [26]

      (26) Xu, Y.; Shi, G. J. Mater. Chem. 2011, 21 (10), 3311.

    27. [27]

      (27) Dreyer, D. R.; Park, S.; Bielawski, C.W.; Ruoff, R. S. Chem. Soc. Rev. 2010, 39 (1), 228. doi: 10.1039/b917103g

    28. [28]

      (28) Thomsen, C.; Reich, S. Phys. Rev. Lett. 2000, 85, 5214. doi: 10.1103/PhysRevLett.85.5214

    29. [29]

      (29) Yang, Y. H.; Sun, H. J.; Peng, T. J.; Huang, Q. Acta Phys. -Chim. Sin. 2011, 27 (3), 736. [杨勇辉, 孙红娟, 彭同江, 黄桥. 物理化学学报, 2011, 27 (3), 736.] doi: 10.3866/PKU.WHXB20110320

    30. [30]

      (30) Du, Q.; Zheng, M.; Zhang, L.;Wang, Y.; Chen, J.; Xue, L.; Cao, J. Electrochim. Acta 2010, 55 (12), 3897. doi: 10.1016/j.electacta.2010.01.089

    31. [31]

      (31) Chen, S.; Zhu, J.;Wu, X.; Han, Q.;Wang, X. ACS Nano 2010, 4 (5), 2822. doi: 10.1021/nn901311t

    32. [32]

      (32) Mao, Lu.; Zhang, K.; Chan, H. S. O.;Wu, J. S. J. Mater. Chem. 2012, 22, 1845. doi: 10.1039/c1jm14503g

    33. [33]

      (33) Simon, P.; tsi, Y. Nat. Mater. 2008, 7 (11), 845.

    34. [34]

      (34) Wu, X. L.;Wang,W.; Guo, Y. G.;Wan, L. J.; Nanosci, J. Nano Technol. 2011, 11 (3), 1897.

    35. [35]

      (35) Polat, E. O.; Kocabas, C. Nano Lett. 2013, 13 (12), 5851. doi: 10.1021/nl402616t


  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    6. [6]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    7. [7]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    8. [8]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    9. [9]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    10. [10]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    11. [11]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    12. [12]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    13. [13]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    14. [14]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    17. [17]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    18. [18]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    19. [19]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    20. [20]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

Metrics
  • PDF Downloads(846)
  • Abstract views(1474)
  • HTML views(138)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return