Citation: SHI Nan, GAO Bao-Jiao, YANG Qing. Adsorption Characteristics of Bovine Serum Albumin on Cationic Grafted Particles QPDMAEMA/SiO2 with Brush Structure[J]. Acta Physico-Chimica Sinica, ;2014, 30(11): 2168-2176. doi: 10.3866/PKU.WHXB201409151 shu

Adsorption Characteristics of Bovine Serum Albumin on Cationic Grafted Particles QPDMAEMA/SiO2 with Brush Structure

  • Received Date: 16 June 2014
    Available Online: 15 September 2014

    Fund Project: 山西省青年科学基金(2013021009-1)资助 (2013021009-1)

  • Cationic grafted particles with a brush structure were prepared with micron-sized silica gel particles as a matrix via graft-polymerization and macromolecular reaction. The adsorption ability, adsorption mechanism, and adsorption thermodynamics of bovine serum albumin (BSA) on the particles were investigated in depth. The tertiary amine group-containing monomer (dimethylaminoethyl methacrylate, DMAEMA) was first allowed to polymerize on the surfaces of silica gel particles by initiating the ―NH2/S2O82- surface system, resulting in grafted PDMAEMA/SiO2 particles. Subsequently, the tertiary amine groups in the chains of the grafted PDMAEMA macromolecules were quaternized with chlorethamin reagent to obtain the functional grafted QPDMAEMA/SiO2 particles, on which the cationic polyelectrolyte QPDMAEMA macromolecules were grafted. The zeta potential of the QPDMAEMA/SiO2 particles was determined to estimate their surface electrical property. Isothermal adsorption experiments were carried out to investigate the effects of several main factors, including the pH value of the medium, ion strength, and temperature, on the adsorption performance of QPDMAEMA/SiO2 particles. Finally, the adsorption thermodynamics were investigated. The results showed that the functional grafted QPDMAEMA/SiO2 particles had much higher zeta potential than PDMAEMA/SiO2. BSA would be very strongly adsorbed on QPDMAEMA/SiO2 particles through electrostatic interactions. The adsorption capacity first increased and then decreased with increasing pH value, and it had a maximum value of 112 mg·g-1 when the pH value of the medium was equal to the isoelectric point of BSA (pI=4.7). On both sides of the isoelectric point, the effect of ion strength on the adsorption capacity was opposite. When the pH value of the medium was lower than the isoelectric point of BSA (i.e., pH<4.7), the adsorption capacity increased with increasing concentrations of electrolyte (NaCl). When the pH value of the medium was equal to the isoelectric point of BSA (i.e., pH=4.7), the adsorption capacity was almost unchanged with ion strength. The adsorption process was exothermic and during this process the entropy tended to decrease. Furthermore, this adsorption process was driven by enthalpy.

  • 加载中
    1. [1]

      (1) Anirudhan, T. S.; Rejeena, S. R.; Tharun, A. R. Colloids Surf. BBiointerfaces 2012, 93, 49. doi: 10.1016/j.colsurfb.2011.12.010

    2. [2]

      (2) Jin, G.; Zhang, L.; Yao, Q. Z. J. Membr. Sci. 2007, 287, 271. doi: 10.1016/j.memsci.2006.10.047

    3. [3]

      (3) Kopac, T.; Bozgeyik, K.; Yener, J. Colloid Surf. A-Physicochem. Eng. Asp. 2008, 322, 19. doi: 10.1016/j.colsurfa.2008.02.010

    4. [4]

      (4) Yamasaki, K.; Chuang, V. T. G.; Maruyama, T.; Otagiri, M. Biochim. Biophys. Acta 2013, 1830, 5435. doi: 10.1016/j.bbagen.2013.05.005

    5. [5]

      (5) Dong, Y. S.; Zhang, F.;Wang, Z. M.; Du, L.; Hao, A. Y.; Jiang, B.; Tian, M. Y.; Li, Q.; Ji, Q. A.;Wang, S. C.; Xiu, Z. L. J. Chromatogr. A 2012, 1245, 143.

    6. [6]

      (6) Chen, Z.; He, Y.; Shi, B.; Yang, D. C. Biochim. Biophys. Acta 2013, 1830, 5515. doi: 10.1016/j.bbagen.2013.04.037

    7. [7]

      (7) Zhu, R. Y.; Xin, X.; Dai, H. Y.; Li, Q.; Lei, J. Y.; Chen, Y.; Jin, J. Protein Expr. Purif. 2012, 85, 32. doi: 10.1016/j.pep.2012.06.009

    8. [8]

      (8) Hirose, M.; Tachibana, A.; Tanabe, T. Mater. Sci. Eng. C 2010, 30, 664.(9) Li, J.; Liao, X. P.; Zhang, Q. X.; Shi, B. J. Chromatogr. B 2013, 928, 131.(10) Chen, L. H.; Zhu, G. S.; Zhang, D. L.; Zhao, H.; Guo, M. Y.; Shi,W.; Qiu, S. L. J. Mater. Chem. 2009, 19, 2013.

    9. [9]

      (11) Zhai, Z.;Wang, Y. J.; Chen, Y.; Luo, G. S. J. Sep. Sci. 2008, 31, 3527. doi: 10.1002/jssc.v31:20

    10. [10]

      (12) Wang, R.W.; Zhang, Y.; Ma, G. H.; Su, Z. G. Colloids Surf. BBiointerfaces 2006, 51, 93. doi: 10.1016/j.colsurfb.2006.05.015

    11. [11]

      (13) Marcus, R. K. J. Sep. Sci. 2008, 31, 1923.

    12. [12]

      (14) Hong, J.;Wang, Y. R.; Ye, X. H.; Zhang, Y. H. P. J. Chromatogr. B 2008, 1194, 150.

    13. [13]

      (15) Wang, S. Y.; Chen, K. M.; Kayitmazer, A. B.; Li. L.; Guo, X. H. Colloids Surf. B-Biointerfaces 2013, 107, 251. doi: 10.1016/j.colsurfb.2013.02.026

    14. [14]

      (16) Henzler, K.; Haupt, B.; Ballauff, M. Anal. Biochem. 2008, 378, 184. doi: 10.1016/j.ab.2008.04.011

    15. [15]

      (17) Wittemann, A.; Ballauff, M. Macromol. Biosci. 2005, 5, 13.

    16. [16]

      (18) Chen, K.; Zhu, Y.; Li, L.; Lu, Y.; Guo, X. Macromol. Rapid Commun. 2010, 31, 1440.

    17. [17]

      (19) Chen, K.; Zhu, Y.; Zhang, Y.; Li, L.; Lu, Y.; Guo, X. Macromolecules 2011, 44, 632. doi: 10.1021/ma102337c

    18. [18]

      (20) Ahmad, A.; Liu, X. C.; Li, L.; Guo, X. H. Adv. Chem. Eng. 2014, 44, 193. doi: 10.1016/B978-0-12-419974-3.00004-X

    19. [19]

      (21) Fang, X. L.; Gao, B. J.; Huang, X.W.; Zhang, Y. Q.; Gu, L. Y. Acta Polym. Sin. 2012, No. 12, 1472. [房晓琳, 高保娇,黄小卫, 张永奇, 顾来沅. 高分子学报, 2012, No. 12, 1472.](22) Amara, M.; Kerdjoudj, H. Talanta 2003, 60, 991. doi: 10.1016/S0039-9140(03)00155-3

    20. [20]

      (23) Yang, H.; Zheng, Q.; Cheng, R. S. Colloid Surf. A-Physicochem. Eng. Asp. 2012, 407, 1. doi: 10.1016/j.colsurfa.2012.05.031

    21. [21]

      (24) Ballauff, M.; Borisov, O. Curr. Opin. Colloid Interface Sci. 2006, 11, 316. doi: 10.1016/j.cocis.2006.12.002

    22. [22]

      (25) van der Veen, M.; Norde,W.; Stuart, M. C. Colloids Surf. BBiointerfaces 2004, 35, 33.

    23. [23]

      (26) Shamim, N.; Liang, H.; Hidajat, K.; Uddin, M. S. J. Colloid Interface Sci. 2008, 320, 15.

    24. [24]

      (27) Li,W. K.; Li, S. J. Colloid Surf. A-Physicochem. Eng. Asp. 2007, 295, 159. doi: 10.1016/j.colsurfa.2006.08.046

    25. [25]

      (28) Peng, Z. G.; Hidajat, K.; Uddin, M. S. Colloids Surf. BBiointerfaces 2004, 35, 169. doi: 10.1016/j.colsurfb.2004.03.010

    26. [26]

      (29) Bayramo?lu, G.; Ekici, G.; Be?irli, N.; Arica, M. Y. Colloid Surf. A-Physicochem. Eng. Asp. 2007, 310, 68. doi: 10.1016/j.colsurfa.2007.05.067

    27. [27]

      (30) Fu, H. Y.; Gao, B. J.; Niu, Q. Y. Acta Phys. -Chim. Sin. 2010, 26, 359. [付红艳, 高保娇, 牛庆媛. 物理化学学报, 2010, 26, 359.] doi: 10.3866/PKU.WHXB20100207

    28. [28]

      (31) Cestari, A. R.; Vieira, E. F. S.; Mattos, C. R. S. J. Chem. Thermodyn. 2006, 38, 1092. doi: 10.1016/j.jct.2005.11.011

    29. [29]

      (32) Anjos, F. S. C.; Vieira, E. F. S.; Cestaril, A. R. J. Colloid Interface Sci. 2002, 253, 243. doi: 10.1006/jcis.2002.8537

    30. [30]

      (33) Benhamou, A.; Basly, J. P.; Baudu, M.; Derriche, Z.; Hamacha, R. J. Colloid Interface Sci. 2013, 404, 135.


  • 加载中
    1. [1]

      Zhongrui Wang Yuwen Meng Xu Wang . 双层水凝胶的制备及其pH响应变形实验. University Chemistry, 2025, 40(8): 255-264. doi: 10.12461/PKU.DXHX202410038

    2. [2]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    3. [3]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    4. [4]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    7. [7]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    8. [8]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    9. [9]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    10. [10]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    11. [11]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    12. [12]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    13. [13]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    14. [14]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    15. [15]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    16. [16]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    17. [17]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    18. [18]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    19. [19]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    20. [20]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

Metrics
  • PDF Downloads(390)
  • Abstract views(716)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return