Citation: HAN Tao, HUANG Wei, WANG Xiao-Dong, TANG Yu, LIU Shuang-Qiang, YOU Xiang-Xuan. Study of Ce-Cu-Co/CNTs Catalysts for the Synthesis of Higher Alcohols and Ethanol from Syngas[J]. Acta Physico-Chimica Sinica, ;2014, 30(11): 2127-2133. doi: 10.3866/PKU.WHXB201409121 shu

Study of Ce-Cu-Co/CNTs Catalysts for the Synthesis of Higher Alcohols and Ethanol from Syngas

  • Received Date: 5 June 2014
    Available Online: 12 September 2014

    Fund Project: 国家自然科学基金重点项目(21336006) (21336006) 国家自然科学基金面上项目(21176176) (21176176) 高等学校博士学科点专项(优先发展领域) (20111402130002) (优先发展领域) (20111402130002)煤转化国家重点实验室开放课题基金项目(J14-15-603)资助 (J14-15-603)

  • A series of Ce-Cu-Co/carbon nanotubes (CNTs) catalysts with different Ce contents were prepared by co-impregnation, and the catalytic performance was investigated for the synthesis of higher alcohols from syngas. The catalysts were characterized by X-ray diffraction (XRD), temperature-programmed reduction of H2 (H2-TPR), N2 adsorption-desorption isotherms (BET), transmission electron microscopy (TEM), and temperature-programmed desorption of CO (CO-TPD). The results showed that at a Ce content of 3% the catalyst had the highest catalytic activity. The formation rate and selectivity of alcohol reached 696.4 mg·g-1· h-1 and 59.7%, where the mass fraction of ethanol was 46.8% of the total amount of alcohols. The addition of an appropriate amount of Ce facilitated the dispersion of Cu and promoted reduction of the catalysts. It also markedly increased the adsorption capacity for CO, and significantly improved the formation of active sites for alcohols, which is favorable for the catalytic activity and to improve the selectivity of alcohols. Research showed that combining the CuCo-based catalyst, which has high activity and a high ability of carbon chain growth, with the confinement effect of CNTs can result in a narrow distribution of alcohols and significantly improve the selectivity of ethanol.

  • 加载中
    1. [1]

      (1) Li, D. B.; Ma, Y. G.; Qi, H. J.; Li,W. H.; Sun, Y. H.; Zhong, B. Prog. Chem. 2004, 16, 584. [李德宝, 马玉刚, 齐会杰, 李文怀, 孙予罕, 钟炳. 化学进展, 2004, 16, 584.]

    2. [2]

      (2) Ran, H. F.; Fang, K. G.; Lin, M. G.; Sun, Y. H. Nat. Gas Chem. Ind. 2010, 35, 1. [冉宏峰, 房克功, 林明桂, 孙予罕. 天然气化工, 2010, 35, 1.]

    3. [3]

      (3) Xiao, K.; Bao, Z. H.; Qi, X. Z.;Wang, X. X.; Zhong, L. S.; Fang, K. G.; Lin, M. G.; Sun, Y. H. Chin. J. Catal. 2013, 34, 116.

    4. [4]

      (4) Zheng,W.;Yao, X. G.; Hu, D. Z.;Wen, L. Q.;Wang, X. Q. Sci. Technol. Inf. 2009, 10. [郑伟, 姚喜贵, 胡大志, 文良起, 王小倩. 科技资讯, 2009, 10.]

    5. [5]

      (5) Shi, L. M.; Chu,W. J. Mol. Catal. (China) 2011, 25, 316. [士丽敏, 储伟. 分子催化, 2011, 25, 316.]

    6. [6]

      (6) Lin, M. G.; Fang, K. G.; Li, D. B.; Sun, Y. H.; Chin. J. Catal. 2008, 29, 559. [林明桂, 房克功, 李德宝, 孙予罕. 催化学报, 2008, 29, 559.]

    7. [7]

      (7) Wang, N.; Fang, K. G.; Lin, M. G.; Jiang, D.; Li, D. B.; Sun, Y. H. Nat. Gas Chem. Ind. 2010, 35, 6. [王宁, 房克功, 林明桂, 姜东, 李德宝, 孙予罕. 天然气化工, 2010, 35, 6.]

    8. [8]

      (8) Chen, X. P.; Zhao, N.; Sun, Y. H.; Ren, J.;Wang, X. Z.; Zhong, B. Coal Convers. 1998, 21, 22. [陈小平, 赵宁, 孙予罕,任杰, 王秀芝, 钟炳. 煤炭转化, 1998, 21, 22.]

    9. [9]

      (9) Shi, L. M.; Chu,W.; Deng, S. Y. J. Fuel Chem. Technol. 2012, 40, 436. [士丽敏, 储伟, 邓思玉. 燃料化学学报, 2012, 40, 436.]

    10. [10]

      (10) Pan, H.; Bai, F. H.; Su, H. Q. Chem. Ind. Eng. Prog. 2010, 29, 157. [潘慧, 白凤华, 苏海全. 化工进展, 2010, 29, 157.]

    11. [11]

      (11) Mao, D. S.; Guo, S. Q.; Yu, J.; Han, L. P.; Lu, G. Z. Acta. Phys. -Chim. Sin. 2011, 27, 2639. [毛东森, 郭胜强, 俞俊,韩璐蓬, 卢冠忠. 物理化学学报, 2011, 27, 2639.] doi: 10.3866/PKU.WHXB20111125

    12. [12]

      (12) Huang, L. H.; Chu,W.; Hong, J. P.; Luo, S. Z. Chin. J. Catal. 2006, 27, 596. [黄利宏, 储伟, 洪景萍, 罗仕忠. 催化学报, 2006, 27, 596.] doi: 10.1016/S1872-2067(06)60033-8

    13. [13]

      (13) Dong, X.; Liang, X. L.; Li, H. Y.; Lin, G. D.; Zhang, P.; Zhang, H. B. Catal. Today 2009, 147, 158. doi: 10.1016/j.cattod.2008.11.025

    14. [14]

      (14) Wang, M.W.; Li, F. Y.; Peng, N. C. New Carbon Mater. 2002, 17, 75. [王敏炜, 李凤仪, 彭年才. 新型碳材料, 2002, 17, 75.](15) Pan, X. L.; Fan, Z. L.; Chen,W.; Ding, Y. J.; Luo, H. Y.; Bao, X. H. Nat. Mater. 2007, 6, 507.

    15. [15]

      (16) Shi, L. M.; Chu,W.; Xu, H. Y.; Deng, S. Y. Rare Metal Mater. Eng. 2009, 38, 1382. [士丽敏, 储伟, 徐慧远, 邓思玉. 稀有金属材料与工程. 2009, 38, 1382.]

    16. [16]

      (17) Wang, J. J.; Chernavskii, P. A.;Wang, Y.; Khodakov, A. Y. Fuel 2013, 103, 1111. doi: 10.1016/j.fuel.2012.07.055

    17. [17]

      (18) Shi, L. M.; Chu,W.; Deng, S. Y. J. Nat. Gas Chem. 2011, 20, 48. doi: 10.1016/S1003-9953(10)60145-4

    18. [18]

      (19) Cai, Q. R.; Peng, S. Y. The Catalysis Action in C1 Chemistry. Chemical Industry Press: Beijing, 1995; p137. [蔡启瑞, 彭少逸. 碳-化学中的催化作用. 北京: 化学工业出版社, 1995: 137.]

    19. [19]

      (20) Xiao, D. X.; Doesburg, E. S. J. Catal. Today 1987, 2, 123.

    20. [20]

      (21) Nachal, D. S.; G. B.; Challa, S. S. R. K.; James, J. S. Catal. Today 2009, 147, 100. doi: 10.1016/j.cattod.2009.02.027

    21. [21]

      (22) Jae, Y. K.; Jose, A. R.; Jonathan, C. H.; Anatoly, I. F.; Peter, L. L. J. Am. Chem. Soc. 2003, 125, 10684. doi: 10.1021/ja0301673

    22. [22]

      (23) Christpher, S. P.; Hari, N.; Chelsey, D. B. J. Catal. 2009, 266, 308. doi: 10.1016/j.jcat.2009.06.021

    23. [23]

      (24) Jing, G.; Jian, Z. G.; Dan, L.; Zhao, Y. H; Jin, H. F.; Xiao, M. Z. Int. J. Hydrog. Energy 2008, 33, 5493. doi: 10.1016/j.ijhydene.2008.07.040

    24. [24]

      (25) Damyanva, S.; Bueno, J. M. C. Appl. Catal. A 2003, 253, 135. doi: 10.1016/S0926-860X(03)00500-3

    25. [25]

      (26) Shu, J. J.; Shao, Q. S. Appl. Catal. B 2013, 140 -141, 1.

    26. [26]

      (27) Fang, Y. Z.; Liu, Y.; Zhang, L. H. Appl. Catal. A 2011, 397, 183. doi: 10.1016/j.apcata.2011.02.032

    27. [27]

      (28) Li, H. Y.; Ren, X. B.; Guo, X. Y. Chem. Phys. Lett. 2007, 437, 108. doi: 10.1016/j.cplett.2007.02.015

    28. [28]

      (29) Shu, J. C.; Xiu, L. P.; Liang, Y.; Xin, H. B. Mater. Lett. 2011, 65, 1522. doi: 10.1016/j.matlet.2011.02.070

    29. [29]

      (30) Santiso, E. E.; Kostov, M. K.; George, A. M.; Nardelli, M. B.; Gubbins, K. E. Appl. Surf. Sci. 2007, 253, 5570. doi: 10.1016/j.apsusc.2006.12.121

    30. [30]

      (31) Guo, S. Q.; Mao, D. S.; Yu, J.; Han, P. L. J. Fuel Chem. Technol. 2012, 40, 1103. [郭强胜, 毛东森, 俞俊, 韩璐蓬. 燃料化学学报, 2012, 40, 1103.]


  • 加载中
    1. [1]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    2. [2]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    5. [5]

      Siwei Lv Tantian Tan Xinyue Li Siyan Zhang Mingyuan Zhang Minghao Li Hangshuo Guo Zhaorong Li Liangjie Dong Fengshuo Zhang Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034

    6. [6]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    7. [7]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    10. [10]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    11. [11]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    12. [12]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    13. [13]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    14. [14]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    15. [15]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    16. [16]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    17. [17]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    18. [18]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    19. [19]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    20. [20]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

Metrics
  • PDF Downloads(397)
  • Abstract views(635)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return