Citation:
SUN Qian, YANG Xiong-Bo, GAO Ya-Jun, ZHAO Jian-Wei. Molecular Dynamics Simulation of the Deformation Behavior of Ag Nanowires with Different Twin Boundary Density under Tension Loading[J]. Acta Physico-Chimica Sinica,
;2014, 30(11): 2015-2023.
doi:
10.3866/PKU.WHXB201409101
-
The deformation mechanisms and mechanical tensile behavior of Ag nanowires containing different densities of parallel twin boundaries were investigated using molecular dynamics simulations. The effect of twin boundaries on the Young's modulus in nanowires was not obvious in the elastic deformation stage. After the elastic deformation stage, the initial dislocation from the edge of the free surfaces in nanowires resulted in plastic deformation. The existence of the twin boundary in nanowires will cause the spread of the dislocation and act as sources of dislocations with the assistance of the newly formed defects with further tension load. The simulation showed that the mechanical strength of Ag nanowires was highly dependent on the twin boundary spacing and the size of the grain, resulting from the aspect ratio between the spacing distance and the length of the cross-section. In particular, twinned Ag nanowires with small twin density (aspect ratio > 1) had small yielding stresses, even less than that of the single crystal Ag nanowires. Only with large twin density (aspect ratio < 1) can the nanowires be strengthened by the structure of the twin boundaries. We also investigated the effects of tensile rate and temperature on the yielding strength of the Ag nanowires. With increasing temperature, the difference of yielding stress between twinned nanowires and single crystal nanowires first increased and then decreased to a stable level. With increasing tensile rate, this difference showed the opposite trend.
-
-
-
[1]
(1) Sun,W.; Zhang, J. J.; Zhao, J.W. Acta Phys. -Chim. Sin. 2013, 29, 1931. [孙玮, 张晋江, 赵健伟. 物理化学学报, 2013, 29, 1931.] doi: 10.3866/PKU.WHXB201305311
-
[2]
(2) Branicio, P. S.; Rino, J. P. Phys. Rev. B 2000, 62, 16950. doi: 10.1103/PhysRevB.62.16950
-
[3]
(3) Ikeda, H.; Qi, Y.; Cagin, T.; Samwer, K.; Johnson,W. L.; ddard,W. A. Phys. Rev. Lett. 1999, 82, 2900. doi: 10.1103/PhysRevLett.82.2900
-
[4]
(4) Christ, A.; Zentgraf, T.; Kuhl, J.; Tikhodeev, S.; Gippius, N.; Giessen, H. Phys. Rev. B 2004, 70, 125113. doi: 10.1103/PhysRevB.70.125113
-
[5]
(5) Gülseren, O.; Ercolessi, F.; Tosatti, E. Phys. Rev. B 1995, 51, 7377. doi: 10.1103/PhysRevB.51.7377
-
[6]
(6) Lai, S.; Guo, J.; Petrova, V.; Ramanath, G.; Allen, L. Phys. Rev. Lett. 1996, 77, 99. doi: 10.1103/PhysRevLett.77.99
-
[7]
(7) Alexandrov, A. S.; Kabanov, V. V. Phys. Rev. Lett. 2005, 95, 076601. doi: 10.1103/PhysRevLett.95.076601
-
[8]
(8) Zhao, J.W.;Wang, F. Y.; Jiang, L. Y.; Yin, X.; Liu, Y. H. Acta Phys. -Chim. Sin. 2009, 25, 1835. [赵健伟, 王奋英, 蒋璐芸,尹星, 刘云红. 物理化学学报, 2009, 25, 1835.] doi: 10.3866/PKU.WHXB20090909
-
[9]
(9) Tian, M. L.;Wang, J. U.; Kurtz, J.; Mallouk, T. E.; Chan, M. H. W. Nano. Lett. 2003, 3, 919. doi: 10.1021/nl034217d
-
[10]
(10) Wang, J.; Tian, M.; Mallouk, T. E.; Chan, M. H. J. Phys. Chem. B 2004, 108, 841. doi: 10.1021/jp035068q
-
[11]
(11) Lu, K.; Lu, L.; Suresh, S. Science 2009, 324, 349. doi: 10.1126/science.1159610
-
[12]
(12) Lu, L.; Sui, M.; Lu, K. Science 2000, 287, 1463. doi: 10.1126/science.287.5457.1463
-
[13]
(13) Lu, L.; Shen, Y. F.; Chen, X. H.; Qian, L. H.; Lu, K. Science 2004, 304, 422. doi: 10.1126/science.1092905
-
[14]
(14) Lu, L.; Chen, X.; Huang, X.; Lu, K. Science 2009, 323, 607. doi: 10.1126/science.1167641
-
[15]
(15) Zhong, S.; Koch, T.;Wang, M.; Scherer, T.;Walheim, S.; Hahn, H.; Schimmel, T. Small 2009, 5, 2265. doi: 10.1002/smll.v5:20
-
[16]
(16) Marszalek, P. E.; Greenleaf,W. J.; Li, H.; Oberhauser, A. F.; Fernandez, J. M. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 6282. doi: 10.1073/pnas.97.12.6282
-
[17]
(17) Wu, B.; Heidelberg, A.; Boland, J. J. Nat. Mater. 2005, 4, 525. doi: 10.1038/nmat1403
-
[18]
(18) Greer, J. R.; Oliver,W. C.; Nix,W. D. Acta Mater. 2005, 53, 1821. doi: 10.1016/j.actamat.2004.12.031
-
[19]
(19) Frøseth, A.; Van Swygenhoven, H.; Derlet, P. Acta Mater. 2004, 52, 2259. doi: 10.1016/j.actamat.2004.01.017
-
[20]
(20) Frøseth, A.; Derlet, P.; Van Swygenhoven, H. Appl. Phys. Lett. 2004, 85, 5863. doi: 10.1063/1.1835531
-
[21]
(21) Yang, Z. Y.; Lu, Z. X.; Zhao, Y. P. J. Appl. Phys. 2009, 106, 023537. doi: 10.1063/1.3186619
-
[22]
(22) Yang, Z. Y.; Lu, Z. X.; Zhao, Y. P. Comput. Mater. Sci. 2009, 46, 142. doi: 10.1016/j.commatsci.2009.02.015
-
[23]
(23) Frøseth, A.; Derlet, P.; Van Swygenhoven, H. Scripta. Mater. 2006, 54, 477.
-
[24]
(24) Yamakov, V.;Wolf, D.; Phillpot, S.; Gleiter, H. Acta Mater. 2003, 51, 4135. doi: 10.1016/S1359-6454(03)00232-5
-
[25]
(25) Jin, Z. H.; Gumbsch, P.; Ma, E.; Albe, K.; Lu, K.; Hahn, H.; Gleiter, H. Scripta. Mater. 2006, 54, 1163. doi: 10.1016/j.scriptamat.2005.11.072
-
[26]
(26) Cao, A.;Wei, Y. Phys. Rev. B 2006, 74, 214108. doi: 10.1103/PhysRevB.74.214108
-
[27]
(27) Cao, A.;Wei, Y. J. Appl. Phys. 2007, 102, 083511. doi: 10.1063/1.2794884
-
[28]
(28) Afanasyev, K. A.; Sansoz, F. Nano Lett. 2007, 7, 2056. doi: 10.1021/nl070959l
-
[29]
(29) Zhang, Y. F.; Huang, H. C. Nanoscale Res. Lett. 2009, 4, 34. doi: 10.1007/s11671-008-9198-1
-
[30]
(30) Zhang, J.; Xu, F.; Yan, Y.; Sun, T. Chin. Sci. Bull. 2013, 58, 684. doi: 10.1007/s11434-012-5575-3
-
[31]
(31) Yuan, L.; Jing, P.; Liu, Y. H.; Xu, Z. H.; Shan, D. B.; Guo, B. Acta Phys. -Chim. Sin. 2014, 63, 1. [袁林, 敬鹏, 刘艳华,徐振海, 单德彬, 郭斌. 物理化学学报, 2014, 63, 1.] doi: 10.3866/PKU.WHXB201311263
-
[32]
(32) Gao, Y.; Fu, Y.; Sun,W. Comput. Mater. Sci. 2012, 55, 322. doi: 10.1016/j.commatsci.2011.11.005
-
[33]
(33) Hoover,W. G. Phys. Rev. A 1985, 31, 1695. doi: 10.1103/PhysRevA.31.1695
-
[34]
(34) Nosé, S. J. Chem. Phys 1984, 81, 511. doi: 10.1063/1.447334
-
[35]
(35) Daw, M. S.; Baskes, M. I. Phys. Rev. Lett. 1983, 50, 1285. doi: 10.1103/PhysRevLett.50.1285
-
[36]
(36) Zhao, J.W.; Yin, X.; Liang, S.; Liu, Y. H.;Wang, D. X.; Deng, S. Y.; Hou, J. Chem. Res. Chin. Univ. 2008, 24, 367. doi: 10.1016/S1005-9040(08)60077-X
-
[37]
(37) Liu, Y.; Zhao, J.;Wang, F. Phys. Rev. B 2009, 80, 115417. doi: 10.1103/PhysRevB.80.115417
-
[38]
(38) Wang, D.; Zhao, J.; Hu, S.; Yin, X.; Liang, S.; Liu, Y.; Deng, S. Nano Lett. 2007, 7, 1208. doi: 10.1021/nl0629512
-
[39]
(39) Wang, F.; Gao, Y.; Zhu, T.; Zhao, J. Nanoscale Res . Lett. 2011, 6, 1.(40) Zhao, J.; Murakoshi, K.; Yin, X.; Kiguchi, M.; Guo, Y.;Wang, N.; Liang, S.; Liu, H. J. Phys. Chem. C 2008, 112, 20088. doi: 10.1021/jp8055448
-
[40]
(41) Wang, F.; Sun,W.;Wang, H.; Zhao, J.; Kiguchi, M.; Sun, C. J. Nanopart. Res. 2012, 14, 1.(42) Cao, A.;Wei, Y.; Mao, S. X. Appl. Phys. Lett. 2007, 90, 151909. doi: 10.1063/1.2721367
-
[41]
(43) Deng, C.; Sansoz, F. Phys. Rev. B 2010, 81, 155430. doi: 10.1103/PhysRevB.81.155430
-
[42]
(44) Wang, J.; Li, N.; Anderoglu, O.; Zhang, X.; Misra, A.; Huang, J.; Hirth, J. Acta Mater. 2010, 58, 2262. doi: 10.1016/j.actamat.2009.12.013
-
[43]
(45) Wang, Y. D.; Liu,W.; Lu, L.; Ren, Y.; Nie, Z. H.; Almer, J.; Cheng, S.; Shen, Y. F.; Zuo, L.; Liaw, P. K. Adv. Eng. Mater. 2010, 12, 906. doi: 10.1002/adem.201000123
-
[44]
(46) Li, X.;Wei, Y.; Lu, L.; Lu, K.; Gao, H. Nature 2010, 464, 877. doi: 10.1038/nature08929
-
[45]
(47) Deng, C.; Sansoz, F. Appl. Phys. Lett. 2009, 95, 091914. doi: 10.1063/1.3222936
-
[46]
(48) Wei, Y. Mater. Sci. Eng. A 2011, 528, 1558. doi: 10.1016/j.msea.2010.10.072
-
[47]
(49) Cao, A.; Ma, E. Acta Mater. 2008, 56, 4816. doi: 10.1016/j.actamat.2008.05.044
-
[48]
(50) Gao, Y.;Wang, H.; Zhao, J.; Sun, C.;Wang, F. Comput. Mater. Sci. 2011, 50, 3032. doi: 10.1016/j.commatsci.2011.05.023
-
[49]
(51) You, Z.; Lu, L.; Lu, K. Scripta. Mater. 2010, 62, 415. doi: 10.1016/j.scriptamat.2009.12.002
-
[1]
-
-
-
[1]
Yingtong FAN , Yujin YAO , Shouhao WAN , Yihang SHEN , Xiang GAO , Cuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043
-
[2]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[3]
Zhi Zhou , Yu-E Lian , Yuqing Li , Hui Gao , Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104
-
[4]
Zhenming Xu , Yibo Wang , Zhenhui Liu , Duo Chen , Mingbo Zheng , Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096
-
[5]
Hongpeng He , Mengmeng Zhang , Mengjiao Hao , Wei Du , Haibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043
-
[6]
Yinyin Qian , Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051
-
[7]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[8]
Jianqiao ZHANG , Yang LIU , Yan HE , Yaling ZHOU , Fan YANG , Shihui CHENG , Bin XIA , Zhong WANG , Shijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444
-
[9]
Shiyang He , Dandan Chu , Zhixin Pang , Yuhang Du , Jiayi Wang , Yuhong Chen , Yumeng Su , Jianhua Qin , Xiangrong Pan , Zhan Zhou , Jingguo Li , Lufang Ma , Chaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046
-
[10]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[11]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[12]
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
-
[13]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[14]
Haiyuan Wang , Yiming Tang , Haoran Guo , Guohui Chen , Yajing Sun , Chao Zhao , Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067
-
[15]
Feng Lu , Tao Wang , Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005
-
[16]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[17]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003
-
[18]
Haoyu Sun , Dun Li , Yuanyuan Min , Yingying Wang , Yanyun Ma , Yiqun Zheng , Hongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007
-
[19]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[20]
Jiayu Gu , Siqi Wang , Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012
-
[1]
Metrics
- PDF Downloads(564)
- Abstract views(665)
- HTML views(17)