Citation: LI Song-Mei, YIN Xiao-Lin, LIU Jian-Hua, ZHANG You, XUE Bing. Effect of Doping with Zn-Al-[V10O28]6- Layered Double Hydroxide on the Properties of Hybrid Sol-Gel Coatings on the LY12 Aluminum Surface[J]. Acta Physico-Chimica Sinica, ;2014, 30(11): 2092-2100. doi: 10.3866/PKU.WHXB201408282 shu

Effect of Doping with Zn-Al-[V10O28]6- Layered Double Hydroxide on the Properties of Hybrid Sol-Gel Coatings on the LY12 Aluminum Surface

  • Received Date: 19 June 2014
    Available Online: 28 August 2014

    Fund Project: 国家自然科学基金(51271012)资助项目 (51271012)

  • Zn-Al-[V10O28]6- layered double hydroxide (LDH-V) as a type of corrosion inhibitor was prepared with the co-precipitation method using one solution containing zinc and aluminum nitrates precursors and a second solution containing Na3VO4, where the decavanadate anion is speciated at pH 4.5. The hybrid solgel solution was prepared from 3-glycydoxypropyltrimethoxysilane (GPTMS) as the organic precursor sol and zirconium n-propoxide (TPOZ) as the inorganic precursor sol. The doped coatings were obtained by dip coating the way that the samples were immersed into solutions with different LDH-V concentrations (0.0, 0.25×10-3, 0.75×10-3, 1.5×10-3, 3.0×10-3 mol·L-1). The morphology and corrosion resistance of the solgel coating doped with different LDH-V concentrations were studied. The sol-gel coatings were investigated by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The salt spray test was used to evaluate the corrosion resistance of the different coatings. The corrosion behavior of the coatings was evaluated by electrochemical impedance spectroscopy (EIS) during immersion in 0.05 mol·L-1 NaCl solution. The results showed that LDH-V not only improves the corrosion resistance of the coating, but also provides a function for self-healing of broken coatings. However, when the LDH-V doping concentration was high, it destroyed the integrity of the coatings and decreased the corrosion resistance of the coatings. The best LDH-V doping concentration was 1.5×10-3 mol·L-1.

  • 加载中
    1. [1]

      (1) Campestrini, P.; vanWesting, E. P. M.; deWit, J. H.W. Electrochim. Acta 2001, 46 (17), 2631. doi: 10.1016/S0013-4686(01)00476-5

    2. [2]

      (2) Anandan, C.;William Grips, V. K.; Rajam, K. S.; Jayaram, V.; Bera, P. Appl. Surf. Sci. 2002, 191 (1-4), 254.

    3. [3]

      (3) Campestrini, P.; eminne, G.; Terryn, H.; Vereecken, J.; de Wit, J. H.W. J. Electrochem. Soc. 2004, 151 (2), B59.

    4. [4]

      (4) Yu, H.; Chen, B.; Shi, X.; Sun, X.; Li, B. Mater. Lett. 2008, 62 (17-18), 2828. doi: 10.1016/j.matlet.2008.01.056

    5. [5]

      (5) Gambelunghe, A.; Piccinini, R.; Ambrogi, M.; Villarini, M.; Moretti, M.; Marchetti, C.; Abbritti, G.; Muzi, G. Toxicology 2003, 188 (2-3), 187. doi: 10.1016/S0300-483X(03)00088-X

    6. [6]

      (6) Evans, E. J. Biomaterials 1994, 15 (9), 713. doi: 10.1016/0142-9612(94)90170-8

    7. [7]

      (7) Wang, D. H.; Bierwagen, G. P. Prog. Org. Coat. 2009, 64 (4), 327. doi: 10.1016/j.porgcoat.2008.08.010

    8. [8]

      (8) Osborne, J. H.; Blohowiak, K. Y.; Taylor, S. R.; Hunter, C.; Bierwa n, G.; Carlson, B.; Bernard, D.; Donley, M. S. Prog. Org. Coat. 2001, 41 (4), 217. doi: 10.1016/S0300-9440(01)00132-1

    9. [9]

      (9) Metroke, T. L.; Apblett, A. Prog. Org. Coat. 2004, 51 (1), 36. doi: 10.1016/j.porgcoat.2004.06.002

    10. [10]

      (10) Zandi-Zand, R.; Ershad-Langroudi, A.; Rahimi, A. Prog. Org. Coat. 2005, 53 (4), 286. doi: 10.1016/j.porgcoat.2005.03.009

    11. [11]

      (11) Lakshmi, R. V.; Yoganandan, G.; Mohan, A. V. N.; Basu, B. J. Surf. Coat. Technol. 2014, 240, 353. doi: 10.1016/j.surfcoat.2013.12.051

    12. [12]

      (12) Schem, M.; Schmidt, T.; Gerwann, J.;Wittmar, M.; Veith, M.; Thompson, G. E.; Molchan, I. S.; Hashimoto, T.; Skeldon, P.; Phani, A. R.; Santucci, S.; Zheludkevich, M. L. Corrosion Sci. 2009, 51 (10), 2304. doi: 10.1016/j.corsci.2009.06.007

    13. [13]

      (13) Moutarlier, V.; Neveu, B.; Gigandet, M. P. Surf. Coat. Technol. 2008, 202 (10), 2052. doi: 10.1016/j.surfcoat.2007.08.040

    14. [14]

      (14) Ding, J. J.; Li, S. M.; Liu, J. H.; Yu, M.; Zhan, Z.W. Acta Aeronaut. Astronaut. Sin. 2011, 32 (6), 1147. [丁娇娇, 李松梅, 刘建华, 于美, 詹中伟. 航空学报, 2011, 32 (6), 1147.]

    15. [15]

      (15) Snihirova, D.; Lamaka, S. V.; Montemor, M. F. Electrochim. Acta 2012, 83, 439. doi: 10.1016/j.electacta.2012.07.102

    16. [16]

      (16) Álvarez, D.; Collazo, A.; Hernández, M.; Nóvoa, X. R.; Pérez, C. Prog. Org. Coat. 2010, 68 (1-2), 91. doi: 10.1016/j.porgcoat.2009.09.023

    17. [17]

      (17) Borisova, D.; Möhwald, H.; Shchukin, D. G. ACS Appl. Mater. Interfaces. 2012, 4 (6), 2931. doi: 10.1021/am300266t

    18. [18]

      (18) Leroux, F.; Taviot-Guého, C. J. Mater. Chem. 2005, 15 (35-36), 3628. doi: 10.1039/b505014f

    19. [19]

      (19) Wang, L. Y.; Li, C.; Liu, M.; Evans, D. G.; Duan, X. Chem. Commun. 2006, No. 2, 123.

    20. [20]

      (20) Constantino, V. R. L. Inorg. Chem. 1995, 34 (4), 883. doi: 10.1021/ic00108a020

    21. [21]

      (21) Bhattacharyya, A.; Hall, D. B.; Barnes, T. J. Appl. Clay Sci. 1995, 10 (1-2), 57. doi: 10.1016/0169-1317(95)00016-W

    22. [22]

      (22) Dimotakis, D. E.; Pinnavaia, T. J. Inorg. Chem. 1990, 29 (13), 2392.

    23. [23]

      (23) Williams, G. R.; O'Hare, D. J. Mater. Chem. 2006, 16 (30), 3065. doi: 10.1039/b604895a

    24. [24]

      (24) Arai, Y.; Ogawa, M. Appl. Clay Sci. 2009, 42 (3-4), 601. doi: 10.1016/j.clay.2008.04.011

    25. [25]

      (25) Shi, R.; Yang, P.; Yin, Y.; Dong, X.; Li, J. Ceram. Int. 2014, 40 (5), 6855. doi: 10.1016/j.ceramint.2013.12.005

    26. [26]

      (26) Yan, T.; Xu, S.; Peng, Q.; Zhao, L.; Zhao, X.; Lei, X.; Zhang, F. J. Electrochem. Soc. 2013, 160 (10), C480.

    27. [27]

      (27) Chen, J.; Song, Y.; Shan, D.; Han, E. Corrosion Sci. 2011, 53 (10), 3281. doi: 10.1016/j.corsci.2011.06.003

    28. [28]

      (28) Guo, X.; Xu, S.; Zhao, L.; Lu,W.; Zhang, F.; Evans, D. G.; Duan, X. Langmuir 2009, 25 (17), 9894. doi: 10.1021/la901012w

    29. [29]

      (29) Buchheit, R. G.; Guan, H.; Mahajanam, S.;Wong, F. Prog. Org. Coat. 2003, 47 (3-4), 174. doi: 10.1016/j.porgcoat.2003.08.003

    30. [30]

      (30) Tedim, J.; Poznyak, S. K.; Kuznetsova, A.; Raps, D.; Hack, T.; Zheludkevich, M. L.; Ferreira, M. G. S. ACS Appl. Mater. Interfaces 2010, 2 (5), 1528. doi: 10.1021/am100174t

    31. [31]

      (31) Salak, A. N.; Tedim, J.; Kuznetsova, A. I.; Ribeiro, J. L.; Vieira, L. G.; Zheludkevich, M. L.; Ferreira, M. G. S. Chem. Phys. 2012, 397, 102. doi: 10.1016/j.chemphys.2012.01.026

    32. [32]

      (32) Yang, Z. Y.; Zhou, H.W.; Zhang, J. C.; Cao,W. L. Acta Phys. -Chim. Sin. 2007, 23 (6), 795. [杨作银, 周宏伟, 张敬畅, 曹维良. 物理化学学报, 2007, 23 (6), 795.] doi: 10.1016/S1872-1508(07)60045-X

    33. [33]

      (33) W?grzyn, A.; Rafalska - ?asocha, A.; Dudek, B.; Dziembaj, R. Catal. Today 2006, 116 (1), 74. doi: 10.1016/j.cattod.2006.03.005

    34. [34]

      (34) Park, E. S.; Ro, H.W.; Nguyen, C. V.; Jaffe, R. L.; Yoon, D. Y. Chem. Mat. 2008, 20 (4), 1548. doi: 10.1021/cm071575z

    35. [35]

      (35) Brown, J. F., Jr.; Slusarczuk, G. M. J. J. Am. Chem. Soc. 1965, 87, 931.

    36. [36]

      (36) Hu, J. M.; Zhang, J. Q.; Xie, D. M.; Cao, C. N. Acta Phys. -Chim. Sin. 2003, 19 (2), 144. [胡吉明, 张鉴清, 谢德明, 曹楚南. 物理化学学报, 2003, 19 (2), 144.] doi: 10.3866/PKU.WHXB20030211

    37. [37]

      (37) Lakshmi, R. V.; Yoganandan, G.; Mohan, A. V. N.; Basu, B. J. Surf. Coat. Technol. 2014, 240, 353.

    38. [38]

      (38) Zhou, B. S.; Li, G. H. Journal of Chinese Corrosion and Protection 1990, 10 (1), 44. [周本省, 李国华. 中国腐蚀与防护学报, 1990, 10 (1), 44.]


  • 加载中
    1. [1]

      Shuyong Zhang Shu'e Song . Ideological and Political Case Design of Experiment of Corrosion and Protection Linking with National Major Projects. University Chemistry, 2024, 39(2): 57-60. doi: 10.3866/PKU.DXHX202304078

    2. [2]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    3. [3]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    4. [4]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    5. [5]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    6. [6]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    7. [7]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    8. [8]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    9. [9]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    10. [10]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    11. [11]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    12. [12]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    13. [13]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    14. [14]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    15. [15]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    16. [16]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    17. [17]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    18. [18]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    19. [19]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    20. [20]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

Metrics
  • PDF Downloads(391)
  • Abstract views(716)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return