Citation:
LI Wen-Zhang, LIU Yang, LI Jie, YANG Ya-Hui, CHEN Qi-Yuan. Synthesis and Interfacial Electron Transfer of a Composite Film of Graphene and Tungsten Oxide[J]. Acta Physico-Chimica Sinica,
;2014, 30(10): 1957-1962.
doi:
10.3866/PKU.WHXB201408041
-
Composite films of graphene and tungsten oxide were fabricated by dip-coating with ammonium metatungstate as the precursor and polyvinylpyrrolidone as the bridging agent. The as-prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. Photocurrent test, electrochemical impedance spectroscopy (EIS), transient photocurrent spectroscopy,and intensity-modulated photocurrent spectroscopy were used to study the transfer process and transport behavior of the charge carriers at the interface of the film electrodes. The results showed that the tungsten oxide nanoparticles were sufficiently composited with graphene. The efficiency of photoelectric conversion improved significantly. The transient constant and the electron-hole lifetime increased after the incorporation of graphene. The electron transit time of the composite film was reduced and was found to be only 47.5% of that of the tungsten oxide film.
-
-
-
[1]
(1) Pan, J. H.; Lee,W. I. Chem. Mater. 2006, 18, 847. doi: 10.1021/cm0522782
-
[2]
(2) Sivula, K.; Formal, F. L.; Grátzel, M. Chem. Mater. 2009, 21, 2862. doi: 10.1021/cm900565a
-
[3]
(3) Su, J.; Guo, L.; Bao, N.; Grimes, C. A. Nano Lett. 2011, 11, 1928. doi: 10.1021/nl2000743
-
[4]
(4) Jayaraman, S.; Jaramillo, T. F.; Baeck, S. H.; McFarland, E.W. J. Phys. Chem. B 2005, 109, 22958. doi: 10.1021/jp053053h
-
[5]
(5) Cui, X.; Guo, L.; Cui, F.; He, Q.; Shi, J. J. Phys. Chem. C 2009, 113, 4134. (6) Xiang, Q.; Meng, G. F.; Zhao, H. B.; Zhang, Y.; Li, H.; Ma,W. J.; Xu, J. Q. J. Phys. Chem. C 2010, 114, 2049. doi: 10.1021/jp909742d
-
[6]
(7) Zheng, H.; Tachibana, Y.; Kalantar zadeh, K. Langmuir 2010, 26, 19148. doi: 10.1021/la103692y
-
[7]
(8) Chang, M. T.; Chou, L. J.; Chueh, Y. L.; Lee, Y. C.; Hsieh, C. H.; Chen, C. D.; Lan, Y.W.; Chen, L. J. Small 2007, 3, 658. (9) Cole, B.; Marsen, B.; Miller, E.; Yan, Y.; To, B.; Jones, K.; Al-Jassim, M. J. Phys. Chem. C 2008, 112, 5213. doi: 10.1021/jp077624c
-
[8]
(10) Long, M.; Cong, Y.; Li, X. K.; Cui, Z.W.; Dong, Z. J.; Yun, G. M. Acta Phys.-Chim. Sin 2013, 29, 1344. [龙梅, 丛野, 李轩科, 崔正威, 董志军, 袁观明. 物理化学学报, 2013, 29, 1344.] doi: 10.3866/PKU.WHXB201303263
-
[9]
(11) Gan, Y. P.; Qin, H. P.; Huang, H.; Tao, X. Y.; Fang, J.W.; Zhang, W. K. Acta Phys. -Chim. Sin. 2013, 29, 403. [甘永平, 秦怀鹏, 黄辉, 陶新永, 方俊武, 张文魁. 物理化学学报, 2013, 29, 403.] doi: 10.3866/PKU.WHXB201211022
-
[10]
(12) Zhang, J.; Xiong, Z.; Zhao, X. S. J. Mater. Chem. 2011, 21, 3634. doi: 10.1039/c0jm03827j
-
[11]
(13) Li, B.; Cao, H. J. Mater. Chem. 2011, 21, 3346. doi: 10.1039/c0jm03253k
-
[12]
(14) Hou, Y.; Zuo, F.; Dagg, A.; Feng, P. Nano Lett. 2012, 12, 6464. doi: 10.1021/nl303961c
-
[13]
(15) Guo, J.; Li, Y.; Zhu, S.; Chen, Z.; Liu, Q.; Zhang, D.; Moon,W. J.; Song, D. M. RSC Advances 2012, 2, 1356. doi: 10.1039/c1ra00621e
-
[14]
(16) An, X.; Yu, J. C.;Wang, Y.; Hu, Y.; Yu, X.; Zhang, G. J. Mater. Chem. 2012, 22, 8525. doi: 10.1039/c2jm16709c
-
[15]
(17) Yang, P.; Huang, H.; Yue, Z.; Li, G.;Wang, X.; Huang, J.; Du, Y. J. Mater. Chem. A 2013, 1, 15110. doi: 10.1039/c3ta13433d
-
[16]
(18) Wu, H.; Xu, M.; Da, P.; Li,W.; Jia, D.; Zheng, G. Phys. Chem. Chem. Phys. 2013, 15, 16138. doi: 10.1039/c3cp53051e
-
[17]
(19) Tang, L.;Wang, Y.; Li, Y.; Feng, H.; Lu, J.; Li, J. Adv. Funct. Mater. 2009, 19, 2782. doi: 10.1002/adfm.v19:17
-
[18]
(20) Xiang, Q.; Yu, J.; Jaroniec, M. Nanoscale 2011, 3, 3670. doi: 10.1039/c1nr10610d
-
[19]
(21) Dang, H.; Dong, X.; Dong, Y.; Huang, J. Int. J. Hydrog. Energy 2013, 38, 9178. doi: 10.1016/j.ijhydene.2013.05.061
-
[20]
(22) Radecka, M.; Sobas, P.;Wierzbicka, M.; Rekas, M. Physica B: Condensed Matter 2005, 364, 85. doi: 10.1016/j.physb.2005.03.039
-
[21]
(23) Hagfeldt, A.; Lindström, H.; Södergren, S.; Lindquist, S. E. J. Electroanal. Chem. 1995, 381, 39. doi: 10.1016/0022-0728(94)03622-A
-
[22]
(24) Su, J.; Feng, X.; Sloppy, J. D.; Guo, L.; Grimes, C. A. Nano Lett. 2010, 11, 203.
-
[1]
-
-
-
[1]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[2]
Chaolin Mi , Yuying Qin , Xinli Huang , Yijie Luo , Zhiwei Zhang , Chengxiang Wang , Yuanchang Shi , Longwei Yin , Rutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011
-
[3]
Tao Xu , Wei Sun , Tianci Kong , Jie Zhou , Yitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021
-
[4]
Anbang Du , Yuanfan Wang , Zhihong Wei , Dongxu Zhang , Li Li , Weiqing Yang , Qianlu Sun , Lili Zhao , Weigao Xu , Yuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027
-
[5]
Lisha LEI , Wei YONG , Yiting CHENG , Yibo WANG , Wenchao HUANG , Junhuan ZHAO , Zhongjie ZHAI , Yangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202
-
[6]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[7]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[8]
Wencheng Fang , Dong Liu , Ying Zhang , Hao Feng , Qiang Li . Improved Photoelectrochemical Performance by Polyoxometalate-Modified CuBi2O4/Mg-CuBi2O4 Homojunction Photocathode. Acta Physico-Chimica Sinica, 2024, 40(2): 2304006-0. doi: 10.3866/PKU.WHXB202304006
-
[9]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[10]
Yue Zhang , Bao Li , Lixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038
-
[11]
Xuechen Hu , Qiuying Xia , Fan Yue , Xinyi He , Zhenghao Mei , Jinshi Wang , Hui Xia , Xiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046
-
[12]
Jingwen Wang , Minghao Wu , Xing Zuo , Yaofeng Yuan , Yahao Wang , Xiaoshun Zhou , Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023
-
[13]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[14]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[15]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[16]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[17]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[18]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[19]
Ping Ye , Lingshuang Qin , Mengyao He , Fangfang Wu , Zengye Chen , Mingxing Liang , Libo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032
-
[20]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[1]
Metrics
- PDF Downloads(501)
- Abstract views(983)
- HTML views(72)