Citation: YANG Chao, LIU Xiao-Qing, HUANG Bi-Chun, WU You-Ming. Structural Properties and Low-Temperature SCR Activity of Zirconium-Modified MnOx/MWCNTs Catalysts[J]. Acta Physico-Chimica Sinica, ;2014, 30(10): 1895-1902. doi: 10.3866/PKU.WHXB201407162 shu

Structural Properties and Low-Temperature SCR Activity of Zirconium-Modified MnOx/MWCNTs Catalysts

  • Received Date: 17 June 2014
    Available Online: 16 July 2014

    Fund Project:

  • A series of ZrO2/MWCNTs were prepared, using ZrO(NO3)2·2H2O as a precursor, by the surface modification of multiwalled carbon nanotubes (MWCNTs). Manganese oxides were supported on the ZrO2/ MWCNTs to prepare MnOx/ZrO2/MWCNTs catalysts. The effect of zirconium on the selective catalytic reduction (SCR) activity of the catalysts was investigated. Furthermore, the structural properties of the catalysts were comprehensively characterized by a suite of analytical methods. The results show that the addition of zirconium improved the SCR activity of the MnOx/MWCNTs significantly and the catalyst with 30% Zr loading was found to have the highest activity. X- ray powder diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), and N2 adsorption-desorption results revealed that the modification of zirconium could enhance the dispersion of MnOx on the support as well as enhance the interaction between the metal oxides and the MWCNTs. Additionally, zirconium could also increase the specific surface area, the total pore volume, and the average pore size of the catalysts. Moreover, from the results of X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR), and temperature-programmed desorption of NH3 (NH3- TPD), zirconium increased the atomic concentration of the chemisorbed oxygen on the catalysts surface and promoted the conversion of Mn3+ to Mn4+. Therefore, the surface-active sites increased and the redox ability of the catalysts improved. Additionally, the amount and strength of acid on catalyst surface increased. These factors are the main reason for the MnOx/ZrO2/MWCNTs catalysts having better low-temperature SCR activity.

  • 加载中
    1. [1]

      (1) Ministry of Environmental Protection of the People's Republic of China. 2012 Environment Statistical Yearbook. http://zls.mep. v.cn/hjtj/nb/2012tjnb/201312/t20131225_265552.htm (accessed May 27, 2014). (2) Tian, H. Z.; Liu, K. Y.; Hao, J. M.;Wang, Y.; Gao, J. J.; Qiu, P. P.; Zhu, C. Y. Environ. Sci. Technol. 2013, 47, 11350 doi: 10.1021/es402202d

    2. [2]

      (3) Xu, H. D.; Zhang, Q. L.; Qiu, C. T.; Lin, T.; ng, M. C.; Chen, Y. Q. Chem. Eng. Sci. 2012, 76, 120. doi: 10.1016/j.ces.2012.04.012

    3. [3]

      (4) Mou, X. L.; Zhang, B. S.; Li, Y.; Yao, L. D.;Wei, X. J.; Su, D. S.; Shen,W. J. Angew. Chem. Int. Edit. 2012, 51, 2989. doi: 10.1002/anie.201107113

    4. [4]

      (5) Chan, H. Z.; Li, J. H.; Yuan, J.; Chen, L.; Dai, Y.; Arandiyan, H.; Xu, J. Y.; Hao, J. M. Catal. Today 2013, 20, 139. (6) Ma, Z. X.; Yang, H. S.; Li, B.; Liu, F.; Zhang, X. B. Ind. Eng. Chem. Res. 2013, 52, 3708. (7) Qu, L.; Li, C. T.; Zeng, G. M.; Zhang, M. Y.; Fu, M. F.; Ma, J. F.; Zhan, F. M.; Luo, D. Q. Chem. Eng. J. 2014, 242, 76. doi: 10.1016/j.cej.2013.12.076

    5. [5]

      (8) Park, E.; Kim, M.; Jung, H.; Chin, S.; Jurng, J. ACS Catal. 2013, 3, 1518. doi: 10.1021/cs3007846

    6. [6]

      (9) Wang, L. S.; Huang, B. C.; Su, Y. X.; Zhou, G. Y.;Wang, K. L.; Luo, H. C.; Ye, D. Q. Chem. Eng. J. 2012, 192, 232. doi: 10.1016/j.cej.2012.04.012

    7. [7]

      (10) Su, Y. X.; Fan, B. X.;Wang, L. S.; Liu, Y. F.; Huang, B. C.; Fu, M. L.; Chen, L. M.; Ye, D. Q. Catal. Today 2013, 20, 115. (11) Li, L.;Wang, L. S.; Pan, S.W.;Wei, Z. L.; Huang, B. C. Chin. J. Catal. 2013, 34, 1087. doi: 10.1016/S1872-2067(11)60520-2

    8. [8]

      (12) Pan, S.W.; Luo, H. C.; Li, L.;Wei, Z. L.; Huang, B. C. J. Mol. Catal. A 2013, 377, 154. doi: 10.1016/j.molcata.2013.05.009

    9. [9]

      (13) Han, B.; Li, J. M.; Li, C. Chinese Journal of Light Scattering 2002, 14, 82. [韩波, 李美俊, 李灿. 光散射学报, 2002, 14, 82.] (14) Liu, J. F.; Hang, J. Z.; Shi, Y. L; Zhu,W. D. Journal of Shanghai University (Natural Science) 2009, 15, 87. [刘建飞, 杭建忠, 施利毅, 朱惟德. 上海大学学报(自然科学版), 2009, 15, 87.] (15) Chang, H. Z.; Chen, X. Y.; Li, J. H.; Ma, L.;Wang, C. Z.; Liu, C. X.; Schwank, J.W.; Hao, J. M. Environ. Sci. Technol. 2013, 47, 5294. doi: 10.1021/es304732h

    10. [10]

      (16) Thirupathi, B.; Smirniotis, P.G. J. Catal.2012, 288, 74. (17) Luo, H. C.; Huang, B. C.; Fu, M. L.;Wu, J. L.; Ye, D. Q. Acta Phys. -Chim. Sin. 2012, 28, 2175. [罗红成, 黄碧纯, 付名利, 吴军良, 叶代启. 物理化学学报, 2012, 28, 2175.] doi: 10.3866/PKU.WHXB201207062

    11. [11]

      (18) Ettireddy, P. R.; Ettireddy, N.; Mamedov, S.; Boolchand, P.; Smirniotis, P. G. Appl. Catal. B 2007, 76, 123. (19) Wu, Z. B.; Jiang, B. Q.; Liu, Y.;Wang, H, Q.; Jin, R. B. Environ. Sci. Technol. 2007, 41, 5812. (20) Zhou, G. Y.; Zhong, B. C.;Wang,W. H.; Guan, X. J.; Huang, B. C.; Ye, D. Q.;Wu, H. J. Catal. Today 2011, 175, 157. doi: 10.1016/j.cattod.2011.06.004

    12. [12]

      (21) Yang, S. J.;Wang, C. Z.; Li, J. H.; Yan, N. Q.; Ma, L.; Chang, H. Z. Appl. Catal. B 2011, 110, 71. doi: 10.1016/j.apcatb.2011.08.027

    13. [13]

      (22) Liu, F. D.; He, H. Catal. Today 2010, 153, 70. doi: 10.1016/j.cattod.2010.02.043

    14. [14]

      (23) Guan, B.; Lin, Z.; Huang, Z. J. Phys. Chem. C 2011, 115, 12850. doi: 10.1021/jp112283g

    15. [15]

      (24) Shu, Y.; Sun, H.; Quan, X.; Chen, S. J. Phys. Chem. C 2012, 116, 25319. doi: 10.1021/jp307038q

    16. [16]

      (25) Vishwanathan, V.; Jun, K.W.; Kim, J.W.; Roh, H. S. Appl. Catal. A 2004, 276, 251. doi: 10.1016/j.apcata.2004.08.011

    17. [17]

      (26) Jin, R. B.; Liu. Y.;Wu, Z. B.;Wang, H. Q.; Gu, T. T. Catal. Today 2010, 153, 84. doi: 10.1016/j.cattod.2010.01.039

    18. [18]

      (27) Fang, C.; Zhang, D. S.; Shi, L. Y.; Gao, R. H.; Li, H. R.; Ye, L. P.; Zhang, J. P. Catal. Sci. Technol. 2013, 3, 803. doi: 10.1039/c2cy20670f


  • 加载中
    1. [1]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    2. [2]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    3. [3]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    4. [4]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    5. [5]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    6. [6]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    7. [7]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    8. [8]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    11. [11]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    12. [12]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    13. [13]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    14. [14]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    15. [15]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    16. [16]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    20. [20]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

Metrics
  • PDF Downloads(382)
  • Abstract views(605)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return