Citation:
SONG Da-Yong, CHEN Jing. Hydrogen-Bonding Interactions between Ionic Liquid 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate and Water[J]. Acta Physico-Chimica Sinica,
;2014, 30(9): 1605-1610.
doi:
10.3866/PKU.WHXB201407012
-
Attenuated total reflectance infrared (ATR-IR) spectroscopy, two- dimensional correlation spectroscopy, and quantum chemical calculations were used to elucidate the hydrogen-bonding interactions between an ionic liquid (IL), namely 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([emim][OTf]), and water over a wide concentration range. It was found that water molecules are isolated from each other and embedded in the IL environment at low water concentrations (0.1<x(D2O)< 0.3). The water molecules occupy the IL interstices, and one water molecule forms two hydrogen bonds, with two [OTf]- anions."[OTf]-…HOH… [OTf]-"hydrogen-bonded complexes exist in the [emim][OTf]- water system. In this concentration range, the hydrogen-bonding interaction sites between the cation and water is the alkyl C―H rather than the aromatic C―H. At higher water concentrations, the water molecules form hydrogen bonds with themselves, producing water clusters in the mixture. The hydrogen-bonding interaction site between the cation and water is the aromatic C―H rather than the alkyl C―H.
-
-
-
[1]
(1) Hallett, J. P.;Welton, T. Chem. Rev. 2011, 111, 3508. doi: 10.1021/cr1003248
-
[2]
(2) Greaves, T. L.; Drummond, C. J. Chem. Rev. 2011, 108, 206.(3) Welton, T. Chem. Rev. 1999, 99, 2071. doi: 10.1021/cr980032t
-
[3]
(4) Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Chem. Rev. 2002, 102, 3667. doi: 10.1021/cr010338r
-
[4]
(5) Grabowski, S. J. Hydrogen Bonding: New Insights; Springer: Dordrecht, 2006.(6) Nicodemus, R. A.; Corcelli, S. A.; Skinner, J. L.; Tokmakoff, A. J. Phys. Chem. B 2011, 115, 5604. doi: 10.1021/jp111434u
-
[5]
(7) Tobias, D. J.; Hemminger, J. C. Science 2008, 319, 1197. doi: 10.1126/science.1152799
-
[6]
(8) Skarmoutsos, I.; Tom, T.; Hunt, P. A. Phys. Chem. Chem. Phys. 2014, 16, 3675. doi: 10.1039/c3cp54551b
-
[7]
(9) Fumino, K.;Wulf, A.; Ludwig, R. Phys. Chem. Chem. Phys. 2009, 11, 8790. doi: 10.1039/b905634c
-
[8]
(10) Miki, K.;Westh, P.; Nishikawa K.; Koga, Y. J. Phys. Chem. B 2005, 109, 9014. doi: 10.1021/jp046309c
-
[9]
(11) Elaiwi, A.; Hitchcock, P. B.; Seddon, K. R.; Srinivasan, N.; Tan, Y. M.;Welton, T.; Zora, J. A. J. Chem. Soc. Dalton Trans. 1995, 21, 3467.(12) Zhang, L. Q.; Li, H. R. Acta Phys. -Chim. Sin. 2010, 26, 2877. [张力群, 李浩然. 物理化学学报, 2010, 26, 2877.] doi: 10.3866/PKU.WHXB20101123
-
[10]
(13) Zhang, L. Q.;Wang, Y.; Xu, Z.; Li, H. J. Phys. Chem. B 2009, 113, 5978. doi: 10.1021/jp900139z
-
[11]
(14) Cammarata, L.; Kazarian, S. G.; Salterb, P. A.;Welton, T. Phys. Chem. Chem. Phys. 2001, 3, 5192. doi: 10.1039/b106900d
-
[12]
(15) Zhang, L.; Xu, Z.;Wang, Y.; Li, H. J. Phys. Chem. B 2008, 112, 6411. doi: 10.1021/jp8001349
-
[13]
(16) Wang, N. N.; Zhang, Q. G.;Wu, F. G.; Li, Q. Z.; Yu, Z.W. J. Phys. Chem. B 2010, 114, 8689. doi: 10.1021/jp103438q
-
[14]
(17) Zhang, Q. G.;Wang, N. N.; Yu, Z.W. J. Phys. Chem. B 2010, 114, 4747. doi: 10.1021/jp1009498
-
[15]
(18) Zhang, Q. G.;Wang, N. N.;Wang, S. L. Yu, Z.W. J. Phys. Chem. B 2011, 115, 11127. doi: 10.1021/jp204305g
-
[16]
(19) Wang, Y.; Li, H. R.; Han, S. J. J. Phys. Chem. B 2006, 110, 24646. doi: 10.1021/jp064134w
-
[17]
(20) Köddermann, T.;Wertz, C.; Heintz, A.; Ludwig, R. Angew. Chem. Int. Edit. 2006, 45, 3697.(21) Bonhôte, P.; Dias, A.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. Inorg. Chem. 1996, 35, 1168. doi: 10.1021/ic951325x
-
[18]
(22) Behar, D.; Neta, P. J. Phys. Chem. A 2002, 106, 3139.(23) Socrates, G. Infrared Characteristic Group Frequencies; John Wiley & Sons: Chichester, U.K., 1980; p 91.(24) Andanson, J.; Baiker, A. J. Phys. Chem. C 2013, 117, 12210. doi: 10.1021/jp403340v
-
[19]
(25) Tait, S.; Osteryoung, R. A. Inorg. Chem. 1984, 23, 4352. doi: 10.1021/ic00193a049
-
[20]
(26) Joseph, J.; Jemmis, E. D. J. Am. Chem. Soc. 2007, 129, 4620. doi: 10.1021/ja067545z
-
[21]
(27) Noda, I. Appl. Spectrosc. 1993, 47, 1329. doi: 10.1366/0003702934067694
-
[22]
(28) Yang, J. Z.; Lu, X. M.; Gui, J. S.; Xu,W. G. Green Chem. 2004, 6, 541. doi: 10.1039/b412286k
-
[23]
(29) Choudhury, A. R.;Winterton, N.; Steiner, A.; Cooper, A. I.; Johnson, K. A. CrystEngComm 2006, 8, 742. doi: 10.1039/b609598d
-
[1]
-
-
-
[1]
Yameen Ahmed , Xiangxiang Feng , Yuanji Gao , Yang Ding , Caoyu Long , Mustafa Haider , Hengyue Li , Zhuan Li , Shicheng Huang , Makhsud I. Saidaminov , Junliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057
-
[2]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[3]
Yang Wang , Yunpeng Fu , Xiaoji Liu , Guotao Zhang , Guobin Li , Wanqiang Liu , Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113
-
[4]
Yuxin CHEN , Yanni LING , Yuqing YAO , Keyi WANG , Linna LI , Xin ZHANG , Qin WANG , Hongdao LI , Wenmin WANG . Construction, structures, and interaction with DNA of two SmⅢ4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258
-
[5]
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
-
[6]
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
-
[7]
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
-
[8]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[9]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Liu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004
-
[10]
Zilin Hu , Yaoshen Niu , Xiaohui Rong , Yongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005
-
[11]
Ke Zhao , Zhen Liu , Luyao Liu , Changyuan Yu , Jingshun Pan , Xuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029
-
[12]
Qi Wang , Yicong Gao , Feng Lu , Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141
-
[13]
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
-
[14]
Huanhuan XIE , Yingnan SONG , Lei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281
-
[15]
Haiyu Zhu , Zhuoqun Wen , Wen Xiong , Xingzhan Wei , Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078
-
[16]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024
-
[17]
Chunling Qin , Shuang Chen , Hassanien Gomaa , Mohamed A. Shenashen , Sherif A. El-Safty , Qian Liu , Cuihua An , Xijun Liu , Qibo Deng , Ning Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059
-
[18]
Renjie Xue , Chao Ma , Jing He , Xuechao Li , Yanning Tang , Lifeng Chi , Haiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011
-
[19]
Shasha SUN , Weichun HUANG , Mengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430
-
[20]
Yuanyuan Ping , Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092
-
[1]
Metrics
- PDF Downloads(648)
- Abstract views(752)
- HTML views(15)