Citation:
XIAO Xue-Chun, SHI Wei, NI Zhe-Ming. Selective Hydrogenation Mechanism of Cinnamaldehyde on Au(111) Surface[J]. Acta Physico-Chimica Sinica,
;2014, 30(8): 1456-1464.
doi:
10.3866/PKU.WHXB201406091
-
The adsorption behavior and selective hydrogenation reaction mechanisms (C=O addition, C=C addition, and 1,4-conjugate addition) of cinnamaldehyde on an Au(111) surface were investigated by density functional theory combined with a periodic slab model. The adsorption energies of various adsorption models were obtained to determine the preferred adsorption configuration. The calculated results indicate that the most stable adsorption configuration involved the C=O and C=C double bond adsorbed on the Au(111) surface, with an average adsorption energy of 140.0 kJ·mol-1. The transition states of each elementary reaction for all possible reaction mechanisms were also located. Comparison of the activation energy barriers revealed hydrocinnamaldehyde (HCAL) to be the most likely selective hydrogenation product of cinnamaldehyde on an Au(111) surface. In addition, the 1,4- conjugate addition mechanism, which generates 3-phenyl-1-propen-1-ol (ENOL) that readily tautomerizes to HCAL, required less activation energy than did the C=C direct addition mechanism. The dominant reaction pathway involved an O atom of cinnamaldehyde preferentially hydrogenating to generate a more stable allyl intermediate. Another H atom then added to a C atom directly connected to the phenyl ring of the allyl intermediate to yield ENOL. Finally, ENOL tautomerized to HCAL. Throughout the process, the generation of ENOL is the rate-determining step, for which the highest activation energy barrier was required.
-
-
-
[1]
(1) Li, G. Fine Chemical Intermediates Used Manual; Chemical Industry Press: Beijing, 2009; pp 565-566. [黎钢. 精细化工常用中间体手册. 北京: 化学工业出版社, 2009: 565-566.]
-
[2]
(2) Castellans, A. M. C. F.; Hogeweg, J. M.; Van Nispen, S. P. J. M. Process for the Preparation of 3-Phenylpropanal. PCT Int. Appl. 5811588, 1998.
-
[3]
(3) Galletti, A. M. R.; Toniolo, L.; Antonetti, C.; Evangelisti, C.; Forte, C. Appl. Catal. A-Gen. 2012, 447, 49.
-
[4]
(4) Bertolini, G. R.; Cabello, C. I.; Munoz, M.; Casella, M.; Gazzoli, D.; Pettiti, I.; Ferraris, G. J. Mol. Catal. A-Chem. 2013, 366, 109. doi: 10.1016/j.molcata.2012.09.013
-
[5]
(5) Nguyen, T. T.; Serp, P. ChemCatChem 2013, 5, 3595. doi: 10.1002/cctc.201300527
-
[6]
(6) Piqueras, C. M.; Gutierrez, V.; Vega, D. A.; Volpe, M. A. Appl. Catal. A-Gen. 2013, 467, 253. doi: 10.1016/j.apcata.2013.07.028
-
[7]
(7) Zhang, X.; Guo, Y. C.; Zhang, Z. C.; Gao, J. S.; Xu, C. M. J. Catal. 2012, 292, 213. doi: 10.1016/j.jcat.2012.05.017
-
[8]
(8) Gu, H. Z.; Xu, X. S.; Chen, A. A.; Ao, P.; Yan, X. H. Catal. Commun. 2013, 41, 65. doi: 10.1016/j.catcom.2013.07.015
-
[9]
(9) Manyar, H. G.; Yang, B.; Daly, H.; Moor, H.; McMonagle, S.; Tao, Y.; Yadav, G. D.; guet, A.; Hu, P.; Hardacre, C. ChemCatChem 2013, 5, 506. doi: 10.1002/cctc.201200447
-
[10]
(10) Ide, M. S.; Hao, B.; Neurock, M.; Davis, R. J. ACS Catal. 2012, 2, 671. doi: 10.1021/cs200567z
-
[11]
(11) Delbecq, F.; Sautet, P. J. Catal. 1995, 152, 217. doi: 10.1006/jcat.1995.1077
-
[12]
(12) Delbecq, F.; Sautet, P. J. Catal. 2002, 211, 398. doi: 10.1016/S0021-9517(02)93744-9
-
[13]
(13) Liu, B.W.; Gao, M.; Dang, L.; Zhao, H. T.; Marder, T. B.; Lin, Z. Y. Organometallics 2012, 31, 3410. doi: 10.1021/om3002153
-
[14]
(14) Tang, F.W.; Guo,W. M.; Tang, N. N.; Pei, J. Y.; Xu, X. Acta Phys. -Chim. Sin. 2013, 29, 2198. [唐法威, 郭为民, 唐楠楠,裴俊彦, 许旋. 物理化学学报, 2013, 29, 2198.] doi: 10.3866/PKU.WHXB201307294
-
[15]
(15) Ni, Z. M.; Xia, M. Y.; Shi,W.; Qian, P. P. Acta Phys. -Chim. Sin. 2013, 29, 1916. [倪哲明, 夏明玉, 施炜, 钱萍萍. 物理化学学报, 2013, 29, 1916.] doi: 10.3866/PKU.WHXB201307101
-
[16]
(16) Delley, B. J. Chem. Phys. 2000, 113 (18), 7756. doi: 10.1063/1.1316015
-
[17]
(17) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671. doi: 10.1103/PhysRevB.46.6671
-
[18]
(18) Ge, Q.; Jenkins, S. J.; King, D. A. Chem. Phys. Lett. 2000, 327 (3-4), 125. doi: 10.1016/S0009-2614(00)00850-2
-
[19]
(19) Kittel, C. Introduction to Solid State Physics; Chemical Industry Press: Beijing, 2005; p 35; translated by Xiang, J. Z.,Wu, X. H. [Kittel, C. 固体物理导论. 项金钟, 吴兴惠, 译. 北京: 化学工业出版社, 2005: 35.]
-
[20]
(20) Liu, X. M.; Ni, Z. M.; Yao, P.; Xu, Q.; Mao, J. H.;Wang, Q. Q. Acta Phys. -Chim. Sin. 2010, 26, 1599. [刘晓明, 倪哲明,姚萍, 胥倩, 毛江洪, 王巧巧. 物理化学学报, 2010, 26, 1599.] doi: 10.3866/PKU.WHXB20100625
-
[21]
(21) Delley, B. J. Chem. Phys. 1990, 92 (1), 508. doi: 10.1063/1.458452
-
[22]
(22) Wang, J. J.; Lefebvre, I. J. Phys. Chem. C 2013, 117, 9887. doi: 10.1021/jp4013976
-
[23]
(23) Solis-Calero, C.; Ortega-Castro, J.; Hernandez-Laguna, A.; Munoz, F. J. Phys. Chem. C 2013, 117, 8299. doi: 10.1021/jp401488j
-
[24]
(24) Luo, Q. Q.;Wang, T.; Beller, M.; Jiao, H. J. J. Phys. Chem. C 2013, 117, 12715. doi: 10.1021/jp403972b
-
[25]
(25) Loffreda, D.; Delbecq, F.; Vigne, F.; Sautet, P. J. Am. Chem. Soc. 2006, 128, 1316. doi: 10.1021/ja056689v
-
[26]
(26) Capon, B.; Guo, B. Z.; Kwok, F. C.; Siddhanta, A. K.; Zucco, C. Accounts Chem. Res. 1988, 21, 135. doi: 10.1021/ar00148a001
-
[27]
(27) Cao, X. M.; Burch, R.; Hardacre, C.; Hu, P. J. Phys. Chem. C 2011, 115, 19819. doi: 10.1021/jp206520w
-
[28]
(28) Ala na, G.; Ghio, C.; Nagy, P. I. Phys. Chem. Chem. Phys. 2010, 12, 10173. doi: 10.1039/c003999c
-
[1]
-
-
-
[1]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[2]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[3]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[4]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[5]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[6]
Tongqi Ye , Yanqing Wang , Qi Wang , Huaiping Cong , Xianghua Kong , Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128
-
[7]
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
-
[8]
Xiaochen Zhang , Fei Yu , Jie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026
-
[9]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[10]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[11]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[12]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[13]
Zhengkun QIN , Zicong PAN , Hui TIAN , Wanyi ZHANG , Mingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429
-
[14]
Zhi Chai , Huashan Huang , Xukai Shi , Yujing Lan , Zhentao Yuan , Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046
-
[15]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[16]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[17]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[18]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[19]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[20]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.
-
[1]
Metrics
- PDF Downloads(538)
- Abstract views(712)
- HTML views(12)