Citation:
LI Qing-Zhou, LI Yu-Hui, LI Ya-Juan, LIU You-Nian. One-Step Hydrothermal Preparation and Electrochemical Performance of Graphene/Sulfur Cathode Composites[J]. Acta Physico-Chimica Sinica,
;2014, 30(8): 1474-1480.
doi:
10.3866/PKU.WHXB201406041
-
Reduced graphene oxide/sulfur (R /S) composites were synthesized by a one-step hydrothermal method using a mixture of sodium thiosulfate (Na2S2O3) and graphene oxide ( ) solution reacting under acid conditions. We explored the influence of the hydrothermal temperature, reaction time, and sulfur content on the composites. Analysis by X-ray diffraction (XRD), scanning electron microscope (SEM), and the galvanostatic charge and discharge shows that the composites have excellent cycling performance when synthesis occurs at 180 ℃ for 12 h to provide a carbon:sulfur mass ratio of 3:7. The first discharge capacity is delivered at 931 mAh·g-1 and it remains at 828.16 mAh·g-1 after 50 cycles. The coulomb efficiency of the composites is above 95%. In addition, the rate capability of these composites is much better than that of sulfur. Sulfur molecules can be evenly distributed between the graphene layers and fixed to the functional groups on the surface of graphene by this one-step hydrothermal method.
-
-
-
[1]
(1) Nagaura, T.; Tozawa, K. Prog. Batte. Solar Cells 1990, 9, 209.
-
[2]
(2) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359. doi: 10.1038/35104644
-
[3]
(3) Dean, J. A. Lange's Handbook of Chemistry, 3rd ed.; McGraw-Hill: New York, 1985; pp 3-5.
-
[4]
(4) He, X. M.; Pu,W. H.; Ren, J. G.;Wang, L.;Wang, J. L.; Jiang, C. Y.;Wan, C. R. Electrochim. Acta 2007, 52, 7372. doi: 10.1016/j.electacta.2007.06.016
-
[5]
(5) Han, S. C.; Song, M. S.; Lee, H.; Kim, H. S.; Ahn, H. J.; Lee, J. Y. J. Electrochem. Soc. 2003, 150, 889. doi: 10.1149/1.1576766
-
[6]
(6) Zheng,W.; Liu, Y.W.; Hu, X. G.; Zhang, C. F. Electrochim. Acta 2006, 51, 1330. doi: 10.1016/j.electacta.2005.06.021
-
[7]
(7) Yuan, L.; Yuan, H.; Qiu, X.; Chen, L.; Zhu,W. J. Power Sources 2009, 189, 1141. doi: 10.1016/j.jpowsour.2008.12.149
-
[8]
(8) Chen, J. J.; Jia, X.; She, Q. J.;Wang, C.; Zhang, Q.; Zheng, M. S.; Dong, Q. F. Electrochim. Acta 2010, 55, 8062. doi: 10.1016/j.electacta.2010.01.069
-
[9]
(9) Li, S.; Xie, M.; Liu, J. B.;Wang, H.; Yan, H. J. Electrochem. Solid-State Lett. 2011, 14, A105.
-
[10]
(10) Ji, X.; Lee, K. T.; Nazar, L. F. Nature Mater. 2009, 8, 500. doi: 10.1038/nmat2460
-
[11]
(11) Li, X. L.; Cao, Y. L.; Qi,W.; Saraf, V. L.; Xiao, J.; Nie, Z. M.; Mietek, J.; Zhang, J. G.; Schwenzer, B.; Liu, J. J. Mater. Chem. 2011, 21, 16603. doi: 10.1039/c1jm12979a
-
[12]
(12) Xu, G. Y.; Ding, B.; Nie, P.; Luo, H. J.; Zhang, X. G. Acta Phys. -Chim. Sin. 2013, 29, 546. [徐桂银, 丁兵, 聂平, 骆宏钧, 张校刚. 物理化学学报, 2013, 29, 546.] doi: 10.3866/PKU.WHXB201301081
-
[13]
(13) Fu, Y.; Manthiram, A. J. Phys. Chem. C 2012, 116, 8910. doi: 10.1021/jp305718z
-
[14]
(14) Guo, J. C.; Yang, Z. C.; Yu, Y. C.; Abruna, H. D.; Archer, L. A. J. Am. Chem. Soc. 2013, 135, 763. doi: 10.1021/ja309435f
-
[15]
(15) Xiong, S. Z.; Xie, K.; Diao, Y.; Hong, X. B. Electrochim. Acta 2012, 83, 78. doi: 10.1016/j.electacta.2012.07.118
-
[16]
(16) Li, Y. J.; Zhan, H.; Kong, L. B.; Zhan, C. M.; Zhou, Y. H. Electrochem. Commun. 2007, 9, 1217. doi: 10.1016/j.elecom.2007.01.016
-
[17]
(17) Wang,W. K.;Wang, A. B.; Cao, G. P.; Yang, Y. S. Acta Phys. -Chim. Sin. 2004, 20, 1440. [王维坤, 王安邦, 曹高萍, 杨裕生. 物理化学学报, 2004, 20, 1440.] doi: 10.3866/PKU.WHXB20041208
-
[18]
(18) Huang, J. Q.; Liu, X. F.; Zhang, Q.; Chen, C. M.; Zhao, M. Q.; Zhang, S. M.; Zhu,W. C.; Qian,W. Z.;Wei, F. Nano Energy 2013, 2, 314. doi: 10.1016/j.nanoen.2012.10.003
-
[19]
(19) Kim, K. H.; Jun, Y. S.; Gerbec, J. A.; See, K. A.; Stucky, G. D.; Jung, H. T. Carbon 2014, 69, 543. doi: 10.1016/j.carbon.2013.12.065
-
[20]
(20) Zhou,W. D.; Chen, H.; Yu, Y. C.;Wang, D. L.; Cui, Z. M.; DiSalvo, F. J.; Abruna, H. D. ACS Nano 2013, 7, 8801.
-
[21]
(21) Zhou, Y.; Bao, Q.; Tang, L. A. L.; Zhong, Y. L.; Loh, K. P. Chemistry of Materials 2009, 21, 2950. doi: 10.1021/cm9006603
-
[22]
(22) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. doi: 10.1021/ja01539a017
-
[23]
(23) Stankovich, S.; Piner, R. D.; Nguyen, S. B. T.; Ruoff, R. S. Carbon 2006, 44, 3342. doi: 10.1016/j.carbon.2006.06.004
-
[24]
(24) Yu, J. G.;Wang, G. H.; Cheng, B.; Zhou, M. H. Journal of Applied Catalysis 2007, 69, 171. doi: 10.1016/j.apcatb.2006.06.022
-
[25]
(25) Li, Y. J.; Zhan, H.; Liu, S. Q.; Huang, K. L.; Zhou, Y. H. J. Power Sources 2010, 195, 2945. doi: 10.1016/j.jpowsour.2009.11.004
-
[1]
-
-
-
[1]
Tao Wang , Qin Dong , Cunpu Li , Zidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061
-
[2]
Anbang Du , Yuanfan Wang , Zhihong Wei , Dongxu Zhang , Li Li , Weiqing Yang , Qianlu Sun , Lili Zhao , Weigao Xu , Yuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027
-
[3]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[4]
Chaolin Mi , Yuying Qin , Xinli Huang , Yijie Luo , Zhiwei Zhang , Chengxiang Wang , Yuanchang Shi , Longwei Yin , Rutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011
-
[5]
Tao Xu , Wei Sun , Tianci Kong , Jie Zhou , Yitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021
-
[6]
Yingtong Shi , Guotong Xu , Guizeng Liang , Di Lan , Siyuan Zhang , Yanru Wang , Daohao Li , Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082
-
[7]
Yan'e LIU , Shengli JIA , Yifan JIANG , Qinghua ZHAO , Yi LI , Xinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054
-
[8]
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
-
[9]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[10]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[11]
Jiahao Lu , Xin Ming , Yingjun Liu , Yuanyuan Hao , Peijuan Zhang , Songhan Shi , Yi Mao , Yue Yu , Shengying Cai , Zhen Xu , Chao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045
-
[12]
Yue Zhang , Bao Li , Lixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038
-
[13]
Haoying ZHAI , Lanzong WEN , Wenjie LIAO , Qin LI , Wenjun ZHOU , Kun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320
-
[14]
Lisha LEI , Wei YONG , Yiting CHENG , Yibo WANG , Wenchao HUANG , Junhuan ZHAO , Zhongjie ZHAI , Yangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202
-
[15]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[16]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[17]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[18]
Yu ZHANG , Fangfang ZHAO , Cong PAN , Peng WANG , Liangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412
-
[19]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[20]
Xiaoli CHEN , Zhihong LUO , Yuzhu XIONG , Aihua WANG , Xue CHEN , Jiaojing SHAO . Inhibitory effect of the interlayer of two-dimensional vermiculite on the polysulfide shuttle in lithium-sulfur batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1661-1671. doi: 10.11862/CJIC.20250075
-
[1]
Metrics
- PDF Downloads(852)
- Abstract views(747)
- HTML views(16)