Citation: LIANG Yan-Ni, WANG Fan. Theoretical Studies on Low-Lying States of AuX (X=O, S)[J]. Acta Physico-Chimica Sinica, ;2014, 30(8): 1447-1455. doi: 10.3866/PKU.WHXB201405302 shu

Theoretical Studies on Low-Lying States of AuX (X=O, S)

  • Received Date: 11 April 2014
    Available Online: 30 May 2014

    Fund Project:

  • Multireference approaches have commonly been employed to calculate low-lying states of openshell molecules with spin-orbit coupling (SOC), such as for AuO and AuS. However, by choosing a proper reference state, the equation-of-motion coupled-cluster approach (EOM-CC) can also be used to calculate some low-lying states of these molecules. Furthermore, the EOM-CC approach is a single-reference method and, therefore, more easily employed than multireference approaches. In this work, low-lying states of AuO and AuS are investigated based on a recently developed EOM-CC approach for ionization potentials (EOMIP-CC) with SOC at the CCSD level, using the corresponding anions as reference. The contribution of triples with EOMIPCC is estimated by comparing results of EOMIP-CCSD and EOMIP-CCSDT at a scalar relativistic level. In addition, compared with the EOMIP-CCSDT results, errors by UCCSD(T) can reach 0.1-0.15 eV when spin contamination is significant and the norm of T1 is sizeable. When SOC is present, bond lengths and harmonic frequencies obtained with EOMIP-CCSD for the investigated states are in reasonable agreement with experimental data. Furthermore, ionization energies corresponding to the high-lying 2Δ3/2, 2Σ1/2+, and 2Π1/2 states are overestimated by EOMIP-SOC-CCSD, but results for the other low- lying states agree well with the experimental data, with an error of approximately 0.2 eV. These results indicate that the single-reference EOMIPCCSD method with SOC is able to provide a reasonable description of low-lying states of AuO and AuS.

  • 加载中
    1. [1]

      (1) Pitzer, K. S. Accounts Chem. Res. 1979, 12, 272.

    2. [2]

      (2) Pyykko, P.; Desclaux, J. P. Accounts Chem. Res. 1979, 12, 276. doi: 10.1021/ar50140a002

    3. [3]

      (3) Pyykko, P. Chem. Rev. 1988, 88, 563. doi: 10.1021/cr00085a006

    4. [4]

      (4) Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Chem. Rev. 2005, 105, 1103. doi: 10.1021/cr0300789

    5. [5]

      (5) Griffiths, M. J.; Barrow, R. F. J. Chem. Soc., Faraday Trans. 1977, 73, 943. doi: 10.1039/f29777300943

    6. [6]

      (6) Citra, A.; Andrews, L. Theochem 1999, 489, 95. doi: 10.1016/S0166-1280(98)00516-8

    7. [7]

      (7) Sun, Q.; Jena, P.; Kim, Y. D.; Fischer, M.; Gantefor, G. J. Chem. Phys. 2004, 120, 6510. doi: 10.1063/1.1666009

    8. [8]

      (8) Ichino, T.; Gianola, A. J.; Andrews, D. H.; Lineberger,W. C. J. Phys. Chem. A 2004, 108, 11307. doi: 10.1021/jp045791w

    9. [9]

      (9) O'Brien, L. C.; Hardimon, S. C.; O'Brien, J. J. J. Phys. Chem. A 2004, 108, 11302. doi: 10.1021/jp045812m

    10. [10]

      (10) O′Brien, L. C.; Oberlink, A. E.; Roos, B. O. J. Phys. Chem. A 2006, 110, 11954. doi: 10.1021/jp063394a

    11. [11]

      (11) Okabayashi, T.; Koto, F.; Tsukamoto, K.; Yamazaki, E.; Tanimoto, M. Chem. Phys. Lett. 2005, 403, 223. doi: 10.1016/j.cplett.2005.01.003

    12. [12]

      (12) Zhai, H. J.; Bürgel, C.; Bonacic-Koutecky, V.;Wang, L. S. J. Am. Chem. Soc. 2008, 130, 9156. doi: 10.1021/ja802408b

    13. [13]

      (13) Legge, F. S.; Nyberg, G. L.; Peel, J. B. J. Phys. Chem. A 2001, 105, 790.

    14. [14]

      (14) Wu, Z. J. J. Phys. Chem. A 2005, 109, 5951. doi: 10.1021/jp0500283

    15. [15]

      (15) Yao, C.; Guan,W.; Song, P.; Su, Z. M.; Feng, J. D.; Yan, L. K.; Wu, Z. J. Theor. Chem. Acc. 2007, 117, 115.

    16. [16]

      (16) Becke, A. D. Phys. Rev. A 1988, 38, 3098. doi: 10.1103/PhysRevA.38.3098

    17. [17]

      (17) Perdew, J. P. Phys. Rev. B 1986, 33, 8822. doi: 10.1103/PhysRevB.33.8822

    18. [18]

      (18) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785

    19. [19]

      (19) Roos, B. O.; Malmqvist, P. Å. Phys. Chem. Chem. Phys. 2004, 6, 2919. doi: 10.1039/b401472n

    20. [20]

      (20) Li, Z.; Suo, B.; Zhang, Y.; Xiao, Y.; Liu,W. Mol. Phys. 2013, 111, 3741. doi: 10.1080/00268976.2013.785611

    21. [21]

      (21) Krylov, A. I. Annu. Rev. Phys. Chem. 2008, 59, 433. doi: 10.1146/annurev.physchem.59.032607.093602

    22. [22]

      (22) Stanton, J. F.; Gauss, J. J. Chem. Phys. 1994, 101, 8938. doi: 10.1063/1.468022

    23. [23]

      (23) Nooijen, M.; Bartlett, R. J. J. Chem. Phys. 1995, 102, 3629. doi: 10.1063/1.468592

    24. [24]

      (24) Tu, Z. Y.;Wang, F.; Li, X. Y. J. Chem. Phys. 2012, 136, 174102. doi: 10.1063/1.4704894

    25. [25]

      (25) Wang, F.; Gauss, J.; van Wüllen, C. J. Chem. Phys. 2008, 129, 064113. doi: 10.1063/1.2968136

    26. [26]

      (26) Kim, I.; Park, Y. C.; Kim, H.; Lee, Y. S. Chem. Phys. 2012, 395, 115. doi: 10.1016/j.chemphys.2011.05.002

    27. [27]

      (27) Cao, Z. L.;Wang, Z. F.; Yang, M. L.;Wang, F. Acta Phys. -Chim. Sin. 2014, 30 (3), 431. [曹战利, 王治钒, 杨明理, 王繁. 物理化学学报, 2014, 30 (3), 431.]. doi: 10.3866/PKU.WHXB201401023

    28. [28]

      (28) Liang, Y. N.;Wang, F.; Li, X. Y. Phys. Chem. Chem. Phys. 2013, 15, 17929. doi: 10.1039/c3cp52192c

    29. [29]

      (29) Stanton, J. F.; Gauss, J. J. Chem. Phys. 1999, 111, 8785. doi: 10.1063/1.479673

    30. [30]

      (30) Manohar, P. U.; Stanton, J. F.; Krylov, A. I. J. Chem. Phys. 2009, 131, 114112. doi: 10.1063/1.3231133

    31. [31]

      (31) Purvis, G. D., III; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910.

    32. [32]

      (32) Wang, F.; Gauss, J. J. Chem. Phys. 2008, 129, 174110. doi: 10.1063/1.3000010

    33. [33]

      (33) Wang, F.; Gauss, J. J. Chem. Phys. 2009, 131, 164113. doi: 10.1063/1.3245954

    34. [34]

      (34) Stanton, J. F.; Bartlett, R. J. J. Chem. Phys. 1993, 98, 7029. doi: 10.1063/1.464746

    35. [35]

      (35) Dolg, M.; Cao, X. Chem. Rev. 2011, 112, 403.

    36. [36]

      (36) Schwerdtfeger, P. ChemPhysChem 2011, 12, 3143. doi: 10.1002/cphc.201100387

    37. [37]

      (37) Figgen, D.; Rauhut, G.; Dolg, M.; Stoll, H. Chem. Phys. Lett. 2005, 311, 227.

    38. [38]

      (38) Weigend, F.; Baldes, A. J. Chem. Phys. 2010, 133, 174102. doi: 10.1063/1.3495681

    39. [39]

      (39) Rappoport, D.; Furche, F. J. Chem. Phys. 2010, 133, 134105. doi: 10.1063/1.3484283

    40. [40]

      (40) Stanton, J. F.; Gauss, J.; Harding, M. E.; Szalay, P. G.; Auer, A. A.; Bartlett, R. J.; Benedikt, U.; Berger, C.; Bernholdt, D. E.; Bomble, Y. J.; Cheng, L.; Christiansen, O.; Heckert, M.; Heun, O.; Huber, C.; Jagau, T. C.; Jonsson, D.; Jusélius, J.; Klein, K.; Lauderdale,W. J.; Matthews, D. A.; Metzroth, T.; Mück, L. A.; O’Neill, D. P.; Price, D. R.; Prochnow, E.; Puzzarini, C.; Ruud, K.; Schiffmann, F.; Schwalbach,W.; Stopkowicz, S.; Tajti, A.; Vázquez, J.;Wang, F.;Watts, J. D. and the integral packages MOLECULE (Almlöf, J.; Taylor, P. R.), PROPS (Taylor, P. R.), ABACUS (Helgaker, T.; Jensen, H. J. A.; Jørgensen, P.; Olsen, J.), and ECP routines by Mitin, A. V. and van Wüllen, C., CFOUR, Version 1.2; see http://www.cfour.de

    41. [41]

      (41) Liu,W. J.; van Wüllen, C. J. Chem. Phys. 1999, 110, 3730. doi: 10.1063/1.478237

    42. [42]

      (42) Seminario, J. M.; Zacarias, A. G.; Tour, J. M. J. Am. Chem. Soc. 1999, 121, 411. doi: 10.1021/ja982234c


  • 加载中
    1. [1]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    2. [2]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    3. [3]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    4. [4]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    5. [5]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    6. [6]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    7. [7]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    8. [8]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    9. [9]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    10. [10]

      Lanjun Cheng Xinyuan Wang Jie An Xiang Wu Chengfeng Zhu Yanming Fu Yougui Li . Improvement of the Resolution Experiment of Racemic Tartaric Acid. University Chemistry, 2025, 40(7): 277-285. doi: 10.12461/PKU.DXHX202408010

    11. [11]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    12. [12]

      Haiying Jiang Huilin Guo Yongliang Cheng Tongyu Xu Jiquan Liu Mingli Peng . Teaching Design of the Nernst Equation Based on the “Flipped Classroom” Method. University Chemistry, 2024, 39(8): 84-90. doi: 10.3866/PKU.DXHX202312091

    13. [13]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    14. [14]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    15. [15]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    16. [16]

      Lianghong Ye Junqing Ni Zhongyi Yan Zhanming Zhang Can Zhu Mo Sun . Chemical Fuel-Driven Non-Equilibrium Color Change. University Chemistry, 2025, 40(3): 349-354. doi: 10.12461/PKU.DXHX202406109

    17. [17]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    18. [18]

      Wen Shi Jiuxing Jiang . 化学中的数学方法课程建设探索. University Chemistry, 2025, 40(6): 48-53. doi: 10.12461/PKU.DXHX202408088

    19. [19]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    20. [20]

      Meirong Cui Mo Xie Jie Chao . Design and Reflections on the Integration of Artificial Intelligence in Physical Chemistry Laboratory Courses. University Chemistry, 2025, 40(5): 291-300. doi: 10.12461/PKU.DXHX202412015

Metrics
  • PDF Downloads(488)
  • Abstract views(520)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return