Citation: ZHOU Xiao-Ying, XI Wen-Hui, WEI Guang-Hong. Molecular Dynamics Simulations on the Binding of Fullerene to Amyloid-β Oli mers[J]. Acta Physico-Chimica Sinica, ;2014, 30(8): 1587-1596. doi: 10.3866/PKU.WHXB201405291 shu

Molecular Dynamics Simulations on the Binding of Fullerene to Amyloid-β Oli mers

  • Received Date: 11 April 2014
    Available Online: 29 May 2014

    Fund Project:

  • We investigated the binding process of fullerene to fibril-like Aβ42 oli mers by performing multiple molecular dynamics simulations. It was observed that the C60 molecule searched a series of positions on the surfaces of the Aβ42 oli mers before finding a stable binding state. Multi-binding sites have been identified and these can be classified into six types according to the type of residue in contact with the fullerene. The sites near the central hydrophobic core (CHC) (17LVFFA21) and the turn region (27NKGAI31) were identified as the most suitable sites with the lowest associated binding energies. These bound states were primarily stabilized by van der Waals interactions, while the solvation effect acted as a destabilizing factor.

  • 加载中
    1. [1]

      (1) Chiti, F.; Dobson, C. M. Annu. Rev. Biochem. 2006, 75, 333. doi: 10.1146/annurev.biochem.75.101304.123901

    2. [2]

      (2) Selkoe, D. J. Nature 2003, 426, 900. doi: 10.1038/nature02264

    3. [3]

      (3) Selkoe, D. J. Physiol. Rev. 2001, 81, 741.

    4. [4]

      (4) Selkoe, D. J. Jama-J. Am. Med. Assoc. 2000, 283, 1615. doi: 10.1001/jama.283.12.1615

    5. [5]

      (5) Blennow, K.; de Leon, M. J.; Zetterberg, H. Lancet 2006, 368, 387. doi: 10.1016/S0140-6736(06)69113-7

    6. [6]

      (6) Selkoe, D. J. Nature 1999, 399, A23.

    7. [7]

      (7) Hardy, J.; Selkoe, D. J. Science 2002, 297, 353. doi: 10.1126/science.1072994

    8. [8]

      (8) LaFerla, F. M.; Green, K. N.; Oddo, S. Nat. Rev. Neurosci. 2007, 8, 499. doi: 10.1038/nrn2168

    9. [9]

      (9) Reinhard, C.; Hebert, S. S.; De Strooper, B. Embo. J. 2005, 24, 3996. doi: 10.1038/sj.emboj.7600860

    10. [10]

      (10) Finder, V. H.; Glockshuber, R. Neurodegener. Dis. 2007, 4, 13. doi: 10.1159/000100355

    11. [11]

      (11) Rauk, A. Chem. Soc. Rev. 2009, 38, 2698. doi: 10.1039/b807980n

    12. [12]

      (12) Luhrs, T.; Ritter, C.; Adrian, M.; Riek-Loher, D.; Bohrmann, B.; Doeli, H.; Schubert, D.; Riek, R. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 17342. doi: 10.1073/pnas.0506723102

    13. [13]

      (13) Tycko, R. Annu. Rev. Phys. Chem. 2011, 62, 279. doi: 10.1146/annurev-physchem-032210-103539

    14. [14]

      (14) Straub, J. E.; Thirumalai, D. Annu. Rev. Phys. Chem. 2011, 62, 437. doi: 10.1146/annurev-physchem-032210-103526

    15. [15]

      (15) Walsh, D. M.; Selkoe, D. J. J. Neurochem. 2007, 101, 1172. doi: 10.1111/j.1471-4159.2006.04426.x

    16. [16]

      (16) Ma, K.; Clancy, E. L.; Zhang, Y. B.; Ray, D. G.;Wollenberg, K.; Za rski, M. G. J. Am. Chem. Soc. 1999, 121, 8698. doi: 10.1021/ja990864o

    17. [17]

      (17) Peralvarez-Marin, A.; Barth, A.; Graslund, A. J. Mol. Biol. 2008, 379, 589. doi: 10.1016/j.jmb.2008.04.014

    18. [18]

      (18) Liu, F. F.; Dong, X. Y.; Sun, Y. Acta. Phys. -Chim. Sin. 2010, 26, 1643. [刘夫锋, 董晓燕, 孙彦. 物理化学学报, 2010, 26, 1643.] doi: 10.3866/PKU.WHXB20100613

    19. [19]

      (19) Saraiva, A. M.; Cardoso, I.; Pereira, M. C.; Coelho, M. A.; Saraiva, M. J.; Mohwald, H.; Brezesinski, G. ChemBioChem 2010, 11, 1905. doi: 10.1002/cbic.201000237

    20. [20]

      (20) Bitan, G.; Kirkitadze, M. D.; Lomakin, A.; Vollers, S. S.; Benedek, G. B.; Teplow, D. B. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 330. doi: 10.1073/pnas.222681699

    21. [21]

      (21) Cabaleiro-La , C.; Quinlan-Pluck, F.; Lynch, I.; Dawson, K. A.; Linse, S. ACS Chem. Neurosci. 2010, 1, 279. doi: 10.1021/cn900027u

    22. [22]

      (22) Cummings, J. L. New Engl. J. Med. 2004, 351, 56. doi: 10.1056/NEJMra040223

    23. [23]

      (23) Kolosnjaj, J.; Szwarc, H.; Moussa, F. Toxicity Studies of Fullerenes and Derivatives. In Bio-Applications of Nanoparticles; Springer: New York, 2007; p 168.

    24. [24]

      (24) Geckeler, K. E.; Samal, S. Polym. Int. 1999, 48, 743. doi: 10.1002/(SICI)1097-0126(199909)48:9<743::AID-PI246>3.0.CO;2-4

    25. [25]

      (25) Jensen, A.W.;Wilson, S. R.; Schuster, D. I. Bioorgan. Med. Chem. 1996, 4, 767. doi: 10.1016/0968-0896(96)00081-8

    26. [26]

      (26) Li, C. X.; Mezzenga, R. Nanoscale 2013, 5, 6207. doi: 10.1039/c3nr01644g

    27. [27]

      (27) Todorova, N.; Makarucha, A. J.; Hine, N. D. M.; Mostofi, A. A.; Yarovsky, I. PLoS Comput. Biol. 2013, 9 (12), e1003360.

    28. [28]

      (28) Podolski, I. Y.; Podlubnaya, Z. A.; Kosenko, E. A.; Mugantseva, E. A.; Makarova, E. G.; Marsagishvili, L. G.; Shpagina, M. D.; Kaminsky, Y. G.;Andrievsky, G. V.; Klochkov, V. K. J. Nanosci. Nanotechnol. 2007, 7, 1479. doi: 10.1166/jnn.2007.330

    29. [29]

      (29) Huang, H. M.; Ou, H. C.; Hsieh, S. J.; Chiang, L. Y. Life Sciences 2000, 66, 1525. doi: 10.1016/S0024-3205(00)00470-7

    30. [30]

      (30) Guo, J.; Li, J.; Zhang, Y.; Jin, X.; Liu, H.; Yao, X. Plos One 2013, 8, e65579.

    31. [31]

      (31) Zuo, G.; Zhou, X.; Huang, Q.; Fang, H.; Zhou, R. J. Phys. Chem. C 2011, 115, 23323-23328. doi: 10.1021/jp208967t

    32. [32]

      (32) Kim, J. E.; Lee, M. Biochem. Biophys. Res. Commun. 2003, 303, 576. doi: 10.1016/S0006-291X(03)00393-0

    33. [33]

      (33) Andujar, S. A.; Lugli, F.; Hofinger, S.; Enriz, R. D.; Zerbetto, F. Phys. Chem. Chem. Phys. 2012, 14, 8599. doi: 10.1039/c2cp40680b

    34. [34]

      (34) Petkova, A. T.; Yau,W. M.; Tycko, R. Biochemistry 2006, 45, 498. doi: 10.1021/bi051952q

    35. [35]

      (35) Lu, J. X.; Qiang,W.; Yau,W. M.; Schwieters, C. D.; Meredith, S. C.; Tycko, R. Cell 2013, 154, 1257. doi: 10.1016/j.cell.2013.08.035

    36. [36]

      (36) Ma, B. Y.; Nussinov, R. Curr. Opin. Chem. Biol. 2006, 10, 445. doi: 10.1016/j.cbpa.2006.08.018

    37. [37]

      (37) Hezaveh, S.; Samanta, S.; Milano, G.; Roccatano, D. J. Chem. Phys. 2011, 135 (16), 164501. doi: 10.1063/1.3643417

    38. [38]

      (38) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008, 4, 435.

    39. [39]

      (39) van Gunsteren,W. F.; Billeter, S.; Eising, A.; Hünenberger, P. H.; Krüger, P.; Mark, A. E.; Scott,W.; Tironi, I. G. Biomolecular Simulation: the GROMOS96 Manual and User Guide; Vdf Hochschulverlag AG an der ETH Zürich: Zürich, 1996.

    40. [40]

      (40) Berendsen, H.; Postma, J.; Van Gunsteren,W.; Hermans, J. Intermolecular Forces 1981, 11, 331.

    41. [41]

      (41) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089. doi: 10.1063/1.464397

    42. [42]

      (42) Hess, B.; Bekker, H.; Berendsen, H. J.; Fraaije, J. G. J. Comput. Chem. 1997, 18, 1463. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H

    43. [43]

      (43) Miyamoto, S.; Kollman, P. A. J. Comput. Chem. 1992, 13, 952. doi: 10.1002/jcc.540130805

    44. [44]

      (44) Case, D. A.; Darden, T. A.; Cheatham, T. E., III; Simmerling, C. L.;Wang, J.; Duke, R. E.; Luo, R.;Walker, R. C.; Zhang,W.;  Merz, K. M.; Roberts, B. P.;Wang, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Kolossvai, I.;Wong, K. F.; Paesani, F.; Vanicek, J.; Liu, J.;Wu, X.; Brozell, S. R.; Steinbrecher, T.; hlke, H.; Cai, Q.; Ye, X.;Wang, J.; Hsieh, M. J.; Cui, G.; Roe, D. R.; Mathews, D. H.; Seetin, M. G.; Sagui, C.; Babin, V.; Luchko, T.; Gusarov, S.; Kovalenko, A.; Kollman, P. A. AMBER 11; University of California: San Francisco, 2010.

    45. [45]

      (45) Kabsch,W.; Sander, C. Biopolymers 1983, 22, 2577. doi: 10.1002/bip.360221211

    46. [46]

      (46) Connolly, M. L. J. Appl. Crystallorg. 1983, 16, 548. doi: 10.1107/S0021889883010985

    47. [47]

      (47) Shao, J. Y.; Tanner, S.W.; Thompson, N.; Cheatham, T. E. J. Chem. Theory Comput. 2007, 3, 2312.

    48. [48]

      (48) Onufriev, A.; Bashford, D.; Case, D. A. J. Phys. Chem. B 2000, 104, 3712.

    49. [49]

      (49) Kopitz, H.; Zivkovic, A.; Engels, J.W.; hlke, H. ChemBioChem 2008, 9, 2619. doi: 10.1002/cbic.200800461

    50. [50]

      (50) Tjernberg, L. O.; Näslund, J.; Lindqvist, F.; Johansson, J.; Karlström, A. R.; Thyberg, J.; Terenius, L.; Nordstedt, C. J. Biol. Chem. 1996, 271, 8545. doi: 10.1074/jbc.271.15.8545


  • 加载中
    1. [1]

      Jibin Miao Changjie Mao Baokang Jin . Exploration and Practice of Virtual and Real Combination Practical Curriculum During the Construction of the National Demonstration Center for Experimental Education: A Case Study of the National Demonstration Center for Experimental Chemistry & Chemical Engineering Education (Anhui University). University Chemistry, 2024, 39(7): 106-109. doi: 10.12461/PKU.DXHX202405021

    2. [2]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    3. [3]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    4. [4]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    5. [5]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    6. [6]

      Hui Wang Yiwen Zhang Dong Liu . “三全育人”理念下培养应用型创新人才——以“赛教结合”模式为例的探索与实践. University Chemistry, 2025, 40(6): 37-42. doi: 10.12461/PKU.DXHX202407091

    7. [7]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    8. [8]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    9. [9]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    10. [10]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    11. [11]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    12. [12]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    13. [13]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    14. [14]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    15. [15]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    16. [16]

      Chengbin Gong Guona Zhang Qian Tang Hong Lei Ling Kong Wenshan Ren . Development of a Practical Teaching System for the Applied Chemistry Major Emphasizing “Industry-Education Integration, University-Enterprise Cooperation, and Multi-Dimensional Combination”. University Chemistry, 2024, 39(6): 220-225. doi: 10.3866/PKU.DXHX202309104

    17. [17]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    18. [18]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    19. [19]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    20. [20]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

Metrics
  • PDF Downloads(807)
  • Abstract views(681)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return