Citation:
HAO Teng, WANG Jun, YU Tie, WANG Jian-Qiang, SHEN Mei-Qing. Effect of NO2 on the Selective Catalytic Reduction of NO with NH3 over Cu/SAPO-34 Molecular Sieve Catalyst[J]. Acta Physico-Chimica Sinica,
;2014, 30(8): 1567-1574.
doi:
10.3866/PKU.WHXB201405261
-
This study investigated the effects of NO2 on the selective catalytic reduction (SCR) of NO by NH3 over Cu/SAPO-34 catalyst at temperatures ranging from 100 to 500 ℃. The Cu/SAPO- 34 sample was hydrothermally treated at 750 ℃ for 4 h to obtain a de-greened sample and X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the structure of the catalyst. SCR activity test, kinetic analysis, and in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ-DRIFTS) were all applied to evaluate the changes in catalytic activity in the presence of various NO/NO2 ratios. The SCR results for different NO/NO2 molar ratios demonstrated that NO2 inhibited the NOx removal efficiency over the Cu/SAPO- 34 catalyst at low temperatures (100-280 ℃), but enhanced the efficiency at high temperatures (above 280 ℃). The amount of N2O was observed to increase with decreasing NO/NO2 ratios, owing to the decomposition of NH4NO3. The kinetic results showed that the fast SCR reaction exhibited a higher apparent activation energy (Ea=64.02 kJ·mol-1) than that of the standard SCR reaction (Ea=48.00 kJ·mol-1) over Cu/SAPO-34 catalyst. The results of in situ-DRIFTS showed that NO2 did not efficiently generate nitrate species on Cu2+ sites compared with NO, and that some nitrate species combined with NH4+ on Brønsted acid sites to generate NH4NO3. The inhibitory effect of NO2 at low temperatures is evidently caused by deposited NH4NO3 covering the active sites of Cu/SAPO-34 catalyst, while these NH4NO3 species can be reduced by NO or thermally decomposed as the temperature increases.
-
-
-
[1]
(1) Busca, G.; Lietti, L.; Ramis, G.; Berti, F. Appl. Catal. B: Environ. 1998, 18, 1. doi: 10.1016/S0926-3373(98)00040-X
-
[2]
(2) Qi, G. S.; Yang, R. T.; Chang, R. Appl. Catal. B: Environ. 2004, 51, 93. doi: 10.1016/j.apcatb.2004.01.023
-
[3]
(3) Liu, C. C.; Teng, H. Appl. Catal. B: Environ. 2005, 58, 69. doi: 10.1016/j.apcatb.2004.12.002
-
[4]
(4) Yan, J. Y.; Sachtler,W. M. H.; Kung, H. H. Catal. Today 1997, 33, 279. doi: 10.1016/S0920-5861(96)00100-9
-
[5]
(5) Sjövall, H.; Olsson, L.; Fridell, E.; Blint, R. J. Appl. Catal. B: Environ. 2006, 64, 180. doi: 10.1016/j.apcatb.2005.12.003
-
[6]
(6) Kwak, J. H.; Tonkyn, R. G.; Kim, D. H.; Szanyi, J.; Peden, C. H. F. J. Catal. 2010, 275, 187. doi: 10.1016/j.jcat.2010.07.031
-
[7]
(7) Fickel, D.W.; D′Addio, E.; Lauterbacha, J. A.; Lobo, R. F. Appl. Catal. B: Environ. 2011, 102, 441. doi: 10.1016/j.apcatb.2010.12.022
-
[8]
(8) Bull, I.; Xue,W. M.; Burk, P.; Boorse, S. R.; Jaglowski,W. M.; Koermer, G. S.; Moini, A.; Patchett, J. A.; Dettling, J. C. Caudle, M. T. Copper CHA Zeolite Catalysts. US Patent 7601662, 2009.
-
[9]
(9) Kwak, J. H.; Tran, D.; Burton, S. D.; Szanyi, J.; Lee, J. H.; Peden, C. H. F. J. Catal. 2012, 287, 203. doi: 10.1016/j.jcat.2011.12.025
-
[10]
(10) Schmieg, S. J.; Oh, S. H.; Kim, C. H. Catal. Today 2012, 184, 252. doi: 10.1016/j.cattod.2011.10.034
-
[11]
(11) Fickel, D.W.; Lobo, R. F. J. Phys. Chem. C 2010, 114, 1633.
-
[12]
(12) Korhonen, S. T.; Fickel, D.W.; Lobo, R. F.;Weckhuysen, B. M.; Beale, A. M. Chem. Commun. 2010, 47, 800.
-
[13]
(13) Xue, J. J.;Wang, X. Q.; Qi, G. S.;Wang, J.; Shen, M. Q.; Li,W. J. Catal. 2013, 297, 56. doi: 10.1016/j.jcat.2012.09.020
-
[14]
(14) Fan, S. K.; Xue, J. J.; Yu, T.; Fan, D. Q. Catal. Sci. Technol. 2013, 3, 2357. doi: 10.1039/c3cy00267e
-
[15]
(15) Brandenberger, S.; Kröcher, O.; Tissler, A.; Althoff, R. Catal. Rev. -Sci. Eng. 2008, 50, 492. doi: 10.1080/01614940802480122
-
[16]
(16) Rahkamaa-Tolonen, K.; Maunula, T.; Lomma, M.; Huuhtanen, M.; Keiski, R. L. Catal. Today 2005, 100, 217. doi: 10.1016/j.cattod.2004.09.056
-
[17]
(17) Devadas, M.; Kröcher, O.; Elsener, M.;Wokaun, A.; Söger, N.; Pfeifer, M.; Demel, Y.; Mussmann, L. Appl. Catal. B: Environ. 2006, 67, 187. doi: 10.1016/j.apcatb.2006.04.015
-
[18]
(18) Grossale, A.; Nova, I.; Tronconi, E. Catal. Today 2008, 136, 18. doi: 10.1016/j.cattod.2007.10.117
-
[19]
(19) Grossale, A.; Nova, I.; Tronconi, E.; Chatterjee, D.;Weibel, M. J. Catal. 2008, 256, 312. doi: 10.1016/j.jcat.2008.03.027
-
[20]
(20) Grossale, A.; Nova, I.; Tronconi, E. J. Catal. 2009, 265, 141. doi: 10.1016/j.jcat.2009.04.014
-
[21]
(21) Iwasaki, M.; Shinjoh, H. Appl. Catal. A: Gen. 2010, 390, 71. doi: 10.1016/j.apcata.2010.09.034
-
[22]
(22) Shi, X. Y.; Liu, F. D.; Xie, L. J.; Shan,W. P.; He, H. Environ. Sci. Technol. 2013, 47, 3293
-
[23]
(23) Sjovall, H.; Olsson, L.; Fridell, E.; Blint, R. J. Appl. Catal. B: Environ. 2006, 64, 180. doi: 10.1016/j.apcatb.2005.12.003
-
[24]
(24) Colombo, M.; Nova, I.; Tronconi, E. Catal. Today 2010, 151, 223. doi: 10.1016/j.cattod.2010.01.010
-
[25]
(25) Xie, L. J.; Liu, F. D.; Liu, K.; Shi, X. Y.; He, H. Catal. Sci. Technol. 2014, 4, 1104. doi: 10.1039/c3cy00924f
-
[26]
(26) Buchholz, A.;Wang,W.; Xu, M.; Arnold, A.; Hunger, M. Microporous Mesoporous Mat. 2002, 56, 267. doi: 10.1016/S1387-1811(02)00491-2
-
[27]
(27) Xu, L.; Du, A.;Wei, Y.;Wang, Y.; Yu, Z.; He, Y.; Zhang, X.; Liu, Z. Microporous Mesoporous Mat. 2008, 115, 332. doi: 10.1016/j.micromeso.2008.02.001
-
[28]
(28) Tan, J.; Liu, Z.; Bao, X.; Liu, X.; Han, X. Microporous Mesoporous Mat. 2002, 53, 97. doi: 10.1016/S1387-1811(02)00329-3
-
[29]
(29) Martins, G. V. A.; Berlier, G.; Bisio, C.; Coluccia, S.; Pastore, H. O.; Marchese, L. J. Phys. Chem. C 2008, 112, 7193. doi: 10.1021/jp710613q
-
[30]
(30) Ma, L.; Cheng, Y.; Cavataio, G.; McCabe, R.W.; Fu, L.; Li, J. Chem. Eng. J. 2013, 225, 323 doi: 10.1016/j.cej.2013.03.078
-
[31]
(31) Onida, B.; Gabelica, Z.; Lourencüo, J.; Garrone, E. J. Phys. Chem. 1996, 100, 11072. doi: 10.1021/jp9600874
-
[32]
(32) Centi, G.; Perathoner, S. Catal. Today 1996, 29, 117. doi: 10.1016/0920-5861(95)00289-8
-
[33]
(33) Hadjiivanov, K.; Klissurski, D.; Ramis, G.; Busca, G. Appl. Catal. B: Environ. 1996, 7, 251. doi: 10.1016/0926-3373(95)00034-8
-
[34]
(34) Adelman, B. J.; Beutel, T.; Lei, G. D.; Sachtler,W. M. H. J. Catal. 1996, 158, 327. doi: 10.1006/jcat.1996.0031
-
[35]
(35) Wang, D.; Zhang, L.; Kamasamudram, K.; Epling,W. S. ACS Catal. 2013, 3, 871. doi: 10.1021/cs300843k
-
[36]
(36) Sjövall, H.; Fridell, E.; Blint, R. J.; Olsson, L. Top Catal. 2007, 42, 113.
-
[37]
(37) Qi, G. S.; Yang, R. T. J. Phys. Chem. B 2004, 108, 15738. doi: 10.1021/jp048431h
-
[38]
(38) Trovarelli, A. Catal. Rev. -Sci. Eng. 1996, 38, 439. doi: 10.1080/01614949608006464
-
[39]
(39) Centi, G.; Perathoner, S. Catal. Today 1996, 29, 117. doi: 10.1016/0920-5861(95)00289-8
-
[40]
(40) Konduru, M. V.; Chuang, S. S. C. J. Catal. 2000, 196, 271. doi: 10.1006/jcat.2000.3046
-
[41]
(41) Fanning, P. E.; Vannice, M. A. J. Catal. 2002, 207, 166. doi: 10.1006/jcat.2002.3518
-
[42]
(42) Lei, G. D.; Adelman, B. J.; Sárkány, J.; Sachtler,W. M. H. Appl. Catal. B: Environ. 1995, 5, 245. doi: 10.1016/0926-3373(94)00043-3
-
[43]
(43) Hadjiivanov, K. I. Catal. Rev. -Sci. Eng. 2000, 42, 71. doi: 10.1081/CR-100100260
-
[44]
(44) Ivanova, E.; Hadjiivanov, K.; Klissurski, D.; Bevilacqua, M.; Armaroli, T.; Busca, G. Microporous Mesoporous Mat. 2001, 46, 299. doi: 10.1016/S1387-1811(01)00311-0
-
[45]
(45) Shi, L.; Yu, T.;Wang, X. Q.;Wang, J.; Shen, M. Q. Acta Phys. -Chim. Sin. 2013, 29, 1550. [石琳, 于铁, 王欣全, 王军, 沈美庆. 物理化学学报, 2013, 29, 1550.] doi: 10.3866/PKU.WHXB201304283
-
[46]
(46) Liu, Y.; Gao, Z. Acta Petrol Sin. Pet. Process Section 1996, 12, 35. [刘毅, 高滋. 石油学报: 石油加工, 1996, 12, 35.]
-
[47]
(47) Lok, B. M.; Messina, C. A.; Patton, R. L.; Gajek, R. T.; Cannon, T. R.; Flanigen, E. M. Crystalline Silicoaluminophosphates. US Patent 4440871, 1984.
-
[1]
-
-
-
[1]
Jingkun Yu , Xue Yong , Ang Cao , Siyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015
-
[2]
Linhui Liu , Wuwan Xiong , Mingli Fu , Junliang Wu , Zhenguo Li , Daiqi Ye , Peirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870
-
[3]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[4]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[5]
Yang Li , Yanan Dong , Zhihong Wei , Changzeng Yan , Zhen Li , Lin He , Yuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206
-
[6]
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
-
[7]
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
-
[8]
Jijoe Samuel Prabagar , Kumbam Lingeshwar Reddy , Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564
-
[9]
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ−壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081
-
[10]
Yang Wang , Yunpeng Fu , Xiaoji Liu , Guotao Zhang , Guobin Li , Wanqiang Liu , Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113
-
[11]
Lijun Yue , Siya Liu , Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005
-
[12]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[13]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[14]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[15]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[16]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020
-
[17]
Zhi Chai , Huashan Huang , Xukai Shi , Yujing Lan , Zhentao Yuan , Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046
-
[18]
Jiajia Wang , Sibo Huang , Xijing Gao , Chaoxun Liu , Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050
-
[19]
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
-
[20]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[1]
Metrics
- PDF Downloads(781)
- Abstract views(777)
- HTML views(56)