Citation: ZHANG Jian-Fang, WANG Yan, SHEN Tian-Kuo, SHU Xia, CUI Jie-Wu, CHEN Zhong, WU Yu-Cheng. Visible Light Photocatalytic Performance of Cu2O/TiO2 Nanotube Heterojunction Composites Prepared by Pulse Deposition[J]. Acta Physico-Chimica Sinica, ;2014, 30(8): 1535-1542. doi: 10.3866/PKU.WHXB201405221 shu

Visible Light Photocatalytic Performance of Cu2O/TiO2 Nanotube Heterojunction Composites Prepared by Pulse Deposition

  • Received Date: 21 March 2014
    Available Online: 22 May 2014

    Fund Project:

  • Highly ordered TiO2 nanotube arrays (TNAs) were fabricated by an electrochemical anodization process and Cu2O nanoparticles were subsequently deposited onto these TNAs via pulse deposition to form Cu2O/TiO2 nanotube heterojunction composite materials. Samples were characterized by field emission scanning electron microscopy (FESEM), field emission transmission electron microscopy (FETEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-Vis diffusion reflection spectroscopy (DRS). The photocatalytic performances of the Cu2O/TiO2 composites were investigated by following the visible-light induced photocatalytic decomposition of methyl orange (MO). The results indicated that the inner surfaces and interfaces of the TNAs had been successfully modified with uniformly distributed Cu2O nanoparticles, and that these composites could effectively improve the visible light photocatalytic performance. The Cu2O/TiO2 nanotube composite obtained using 0.01 mol·L-1 CuSO4 solution exhibited the best photocurrent and photocatalytic performance. Based on the results obtained, a possible photocatalytic mechanism is also discussed.

  • 加载中
    1. [1]

      (1) Kamat, P. V. J. Phys. Chem. C 2008, 112, 18737. doi: 10.1021/jp806791s

    2. [2]

      (2) Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nature Materials 2009, 8, 76. doi: 10.1038/nmat2317

    3. [3]

      (3) Chen, C. C.; Ma,W. H.; Zhao, J. C. Chem. Soc. Rev. 2010, 39, 4206. doi: 10.1039/b921692h

    4. [4]

      (4) Macak, J. M.; Zlamal, M.; Krysa, J.; Schmuki, P. Small 2007, 3, 300. doi: 10.1002/smll.200600426

    5. [5]

      (5) Khan, S. U. M.; Al-Shahry, M.; Ingler,W. B., Jr. Science 2002, 297, 2243. doi: 10.1126/science.1075035

    6. [6]

      (6) Yin, S.; Zhang, Q.W.; Saito, F.; Sato, T. Chem. Lett. 2003, 32, 358. doi: 10.1246/cl.2003.358

    7. [7]

      (7) Sun, C.; Huang, L. H.; Liu, Y. L. J. Funct. Mater. 2005, 36, 1412. [孙超, 黄浪欢, 刘应亮. 功能材料, 2005, 36, 1412.]

    8. [8]

      (8) Zhang, J. L.;Wu, Y. M.; Xing, M. Y.; Leghari, S. A. K. Energy Environ. Sci. 2010, 3, 715. doi: 10.1039/b927575d

    9. [9]

      (9) Wu, Q.; Su, Y. F.; Sun, L.;Wang, M. Y.;Wang, Y. Y.; Lin, C. J. Acta Phys. -Chim. Sin. 2012, 28, 635. [吴奇, 苏钰丰, 孙岚, 王梦晔, 王莹莹, 林昌健. 物理化学学报, 2012, 28, 635.] doi: 10.3866/PKU.WHXB201112231

    10. [10]

      (10) Chen, Y. J.; Tian, G. H.; Pan, K.; Tian, C. G.; Zhou, J.; Ren, Z. Y.; Fu, H. G. Dalton Trans. 2012, 41, 1020. doi: 10.1039/c1dt11540e

    11. [11]

      (11) Bian, H. D.; Shu, X.; Zhang, J. F.; Yuan, B.;Wang, Y.; Liu, L. J.; Xu, G. Q.; Chen, Z.;Wu, Y. C. Chem. Asia J. 2013, 8, 2746. doi: 10.1002/asia.201300438

    12. [12]

      (12) Baker, D. R.; Kamat, P. V. Adv. Funct. Mater. 2009, 19, 805. doi: 10.1002/adfm.200801173

    13. [13]

      (13) Yang, L. X.; Luo, S. L.; Liu, R. H.; Cai, Q. Y.; Xiao, Y.; Liu, S. H.; Su, F.;Wen, L. F. J. Phys. Chem. C 2010, 114, 4783.

    14. [14]

      (14) Xue, F.;Wang, L.; Xue, J. J.; Bao, Z. G.; Tao, H. J.; Cao, Z. B. Rare Met. Mater. Eng. 2009, 38, 1238. [薛峰, 王玲, 薛建军, 包祖国, 陶海军, 曹志斌. 稀有金属材料与工程, 2009, 38, 1238.]

    15. [15]

      (15) Dai, G. P.; Liu, S. Q.; Peng, R.; Luo, T. X. Acta Phys. -Chim. Sin. 2012, 28, 2169. [戴高鹏, 刘素芹, 彭荣, 罗天雄. 物理化学学报, 2012, 28, 2169.] doi: 10.3866/PKU.WHXB201207041

    16. [16]

      (16) Sun,W. T.; Yu, Y.; Pan, H. Y.; Gao, X. F.; Chen, Q.; Peng, L. M. J. Am. Chem. Soc. 2008, 130, 1124. doi: 10.1021/ja0777741

    17. [17]

      (17) Gao, X. F.; Li, H. B.; Sun,W. T.; Chen, Q.; Tang, F. Q.; Peng, L. M. J. Phys. Chem. C 2009, 113, 7531. doi: 10.1021/jp810727n

    18. [18]

      (18) Gao, S.W.; Lan, Z.;Wu,W. X.; Que, L. F.;Wu, J. H.; Lin, J. M.; Huang, M. L. Acta Phys. -Chim. Sin. 2014, 30, 446. [高素雯, 兰章, 吴晚霞, 阙兰芳, 吴季怀, 林建明, 黄妙良. 物理化学学报, 2014, 30, 446.] doi: 10.3866/PKU.WHXB201403171

    19. [19]

      (19) Musselman, K. P.; Marin, A.; Schmidt-Mende, L.; MacManus-Driscoll, J. L. Adv. Funct. Mater. 2012, 22, 2202. doi: 10.1002/adfm.201102263

    20. [20]

      (20) Huang, Y. Z.; Miao, H.; Zhang, Q. H.; Chen, C.; Xu, J. Catal. Lett. 2008, 122, 344. doi: 10.1007/s10562-007-9386-0

    21. [21]

      (21) Guan, L.; Pang, H.;Wang, J. J.; Lu, Q. Y.; Yin, J. Z.; Gao, F. Chem. Commun. 2010, 46, 7022. doi: 10.1039/c0cc02331k

    22. [22]

      (22) Park, J. C.; Kim, J.; Kwon, H.; Song, H. Adv. Mater. 2009, 21, 803. doi: 10.1002/adma.200800596

    23. [23]

      (23) Luo, X. L.; Han, Y. F.; Yang, D. S.; Chen, Y. S. Acta Phys. -Chim. Sin. 2012, 28, 297. [罗小林, 韩银凤, 杨德锁, 陈亚芍. 物理化学学报, 2012, 28, 297.] doi: 10.3866/PKU.WHXB201112012

    24. [24]

      (24) Hou, Y.; Li, X. Y.; Zou, X. J.; Quan, X.; Chen, G. H. Environ. Sci. Technol. 2009, 43, 858. doi: 10.1021/es802420u

    25. [25]

      (25) Mor, G. K.; Varghese, O. K.;Wilke, R. H. T.; Sharma, S.; Shankar, K.; Latempa, T. J.; Choi, K. S.; Grimes, C. A. Nano Lett. 2008, 8, 1906. doi: 10.1021/nl080572y

    26. [26]

      (26) Xue, J. B.; Shen, Q. Q.; Li, G. L.; Liang,W. Chin. J. Inorg. Chem. 2013, 29, 729. [薛晋波, 申倩倩, 李光亮, 梁伟. 无机化学学报, 2013, 29, 729.]

    27. [27]

      (27) Zhang, S. S.; Zhang, S. Q.; Peng, F.; Zhang, H. M.; Liu, H.W.; Zhao, H. J. Electrochem. Commun. 2011, 13, 861. doi: 10.1016/j.elecom.2011.05.022

    28. [28]

      (28) Wang, M. Y.; Sun, L.; Lin, Z. Q.; Cai, J. H.; Xie, K. P.; Lin, C. J. Energy Environ. Sci. 2013, 6, 1211. doi: 10.1039/c3ee24162a

    29. [29]

      (29) McLntyre, N. S.; Cook, M. G. Anal. Chem. 1975, 47, 2208. doi: 10.1021/ac60363a034

    30. [30]

      (30) Jin, S.; Atrens, A. Appl. Phys. A 1987, 42, 149. doi: 10.1007/BF00616726

    31. [31]

      (31) Kou, T. Y.; Jin, C. H.; Zhang, C.; Sun, J. Z.; Zhang, Z. H. RSC Adv. 2012, 2, 12636. doi: 10.1039/c2ra21821f


  • 加载中
    1. [1]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    2. [2]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    3. [3]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    6. [6]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    7. [7]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    8. [8]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    9. [9]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    10. [10]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    13. [13]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    14. [14]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    15. [15]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    16. [16]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    17. [17]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    18. [18]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(493)
  • Abstract views(787)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return