Citation:
ZHANG Jian-Fang, WANG Yan, SHEN Tian-Kuo, SHU Xia, CUI Jie-Wu, CHEN Zhong, WU Yu-Cheng. Visible Light Photocatalytic Performance of Cu2O/TiO2 Nanotube Heterojunction Composites Prepared by Pulse Deposition[J]. Acta Physico-Chimica Sinica,
;2014, 30(8): 1535-1542.
doi:
10.3866/PKU.WHXB201405221
-
Highly ordered TiO2 nanotube arrays (TNAs) were fabricated by an electrochemical anodization process and Cu2O nanoparticles were subsequently deposited onto these TNAs via pulse deposition to form Cu2O/TiO2 nanotube heterojunction composite materials. Samples were characterized by field emission scanning electron microscopy (FESEM), field emission transmission electron microscopy (FETEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-Vis diffusion reflection spectroscopy (DRS). The photocatalytic performances of the Cu2O/TiO2 composites were investigated by following the visible-light induced photocatalytic decomposition of methyl orange (MO). The results indicated that the inner surfaces and interfaces of the TNAs had been successfully modified with uniformly distributed Cu2O nanoparticles, and that these composites could effectively improve the visible light photocatalytic performance. The Cu2O/TiO2 nanotube composite obtained using 0.01 mol·L-1 CuSO4 solution exhibited the best photocurrent and photocatalytic performance. Based on the results obtained, a possible photocatalytic mechanism is also discussed.
-
-
-
[1]
(1) Kamat, P. V. J. Phys. Chem. C 2008, 112, 18737. doi: 10.1021/jp806791s
-
[2]
(2) Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nature Materials 2009, 8, 76. doi: 10.1038/nmat2317
-
[3]
(3) Chen, C. C.; Ma,W. H.; Zhao, J. C. Chem. Soc. Rev. 2010, 39, 4206. doi: 10.1039/b921692h
-
[4]
(4) Macak, J. M.; Zlamal, M.; Krysa, J.; Schmuki, P. Small 2007, 3, 300. doi: 10.1002/smll.200600426
-
[5]
(5) Khan, S. U. M.; Al-Shahry, M.; Ingler,W. B., Jr. Science 2002, 297, 2243. doi: 10.1126/science.1075035
-
[6]
(6) Yin, S.; Zhang, Q.W.; Saito, F.; Sato, T. Chem. Lett. 2003, 32, 358. doi: 10.1246/cl.2003.358
-
[7]
(7) Sun, C.; Huang, L. H.; Liu, Y. L. J. Funct. Mater. 2005, 36, 1412. [孙超, 黄浪欢, 刘应亮. 功能材料, 2005, 36, 1412.]
-
[8]
(8) Zhang, J. L.;Wu, Y. M.; Xing, M. Y.; Leghari, S. A. K. Energy Environ. Sci. 2010, 3, 715. doi: 10.1039/b927575d
-
[9]
(9) Wu, Q.; Su, Y. F.; Sun, L.;Wang, M. Y.;Wang, Y. Y.; Lin, C. J. Acta Phys. -Chim. Sin. 2012, 28, 635. [吴奇, 苏钰丰, 孙岚, 王梦晔, 王莹莹, 林昌健. 物理化学学报, 2012, 28, 635.] doi: 10.3866/PKU.WHXB201112231
-
[10]
(10) Chen, Y. J.; Tian, G. H.; Pan, K.; Tian, C. G.; Zhou, J.; Ren, Z. Y.; Fu, H. G. Dalton Trans. 2012, 41, 1020. doi: 10.1039/c1dt11540e
-
[11]
(11) Bian, H. D.; Shu, X.; Zhang, J. F.; Yuan, B.;Wang, Y.; Liu, L. J.; Xu, G. Q.; Chen, Z.;Wu, Y. C. Chem. Asia J. 2013, 8, 2746. doi: 10.1002/asia.201300438
-
[12]
(12) Baker, D. R.; Kamat, P. V. Adv. Funct. Mater. 2009, 19, 805. doi: 10.1002/adfm.200801173
-
[13]
(13) Yang, L. X.; Luo, S. L.; Liu, R. H.; Cai, Q. Y.; Xiao, Y.; Liu, S. H.; Su, F.;Wen, L. F. J. Phys. Chem. C 2010, 114, 4783.
-
[14]
(14) Xue, F.;Wang, L.; Xue, J. J.; Bao, Z. G.; Tao, H. J.; Cao, Z. B. Rare Met. Mater. Eng. 2009, 38, 1238. [薛峰, 王玲, 薛建军, 包祖国, 陶海军, 曹志斌. 稀有金属材料与工程, 2009, 38, 1238.]
-
[15]
(15) Dai, G. P.; Liu, S. Q.; Peng, R.; Luo, T. X. Acta Phys. -Chim. Sin. 2012, 28, 2169. [戴高鹏, 刘素芹, 彭荣, 罗天雄. 物理化学学报, 2012, 28, 2169.] doi: 10.3866/PKU.WHXB201207041
-
[16]
(16) Sun,W. T.; Yu, Y.; Pan, H. Y.; Gao, X. F.; Chen, Q.; Peng, L. M. J. Am. Chem. Soc. 2008, 130, 1124. doi: 10.1021/ja0777741
-
[17]
(17) Gao, X. F.; Li, H. B.; Sun,W. T.; Chen, Q.; Tang, F. Q.; Peng, L. M. J. Phys. Chem. C 2009, 113, 7531. doi: 10.1021/jp810727n
-
[18]
(18) Gao, S.W.; Lan, Z.;Wu,W. X.; Que, L. F.;Wu, J. H.; Lin, J. M.; Huang, M. L. Acta Phys. -Chim. Sin. 2014, 30, 446. [高素雯, 兰章, 吴晚霞, 阙兰芳, 吴季怀, 林建明, 黄妙良. 物理化学学报, 2014, 30, 446.] doi: 10.3866/PKU.WHXB201403171
-
[19]
(19) Musselman, K. P.; Marin, A.; Schmidt-Mende, L.; MacManus-Driscoll, J. L. Adv. Funct. Mater. 2012, 22, 2202. doi: 10.1002/adfm.201102263
-
[20]
(20) Huang, Y. Z.; Miao, H.; Zhang, Q. H.; Chen, C.; Xu, J. Catal. Lett. 2008, 122, 344. doi: 10.1007/s10562-007-9386-0
-
[21]
(21) Guan, L.; Pang, H.;Wang, J. J.; Lu, Q. Y.; Yin, J. Z.; Gao, F. Chem. Commun. 2010, 46, 7022. doi: 10.1039/c0cc02331k
-
[22]
(22) Park, J. C.; Kim, J.; Kwon, H.; Song, H. Adv. Mater. 2009, 21, 803. doi: 10.1002/adma.200800596
-
[23]
(23) Luo, X. L.; Han, Y. F.; Yang, D. S.; Chen, Y. S. Acta Phys. -Chim. Sin. 2012, 28, 297. [罗小林, 韩银凤, 杨德锁, 陈亚芍. 物理化学学报, 2012, 28, 297.] doi: 10.3866/PKU.WHXB201112012
-
[24]
(24) Hou, Y.; Li, X. Y.; Zou, X. J.; Quan, X.; Chen, G. H. Environ. Sci. Technol. 2009, 43, 858. doi: 10.1021/es802420u
-
[25]
(25) Mor, G. K.; Varghese, O. K.;Wilke, R. H. T.; Sharma, S.; Shankar, K.; Latempa, T. J.; Choi, K. S.; Grimes, C. A. Nano Lett. 2008, 8, 1906. doi: 10.1021/nl080572y
-
[26]
(26) Xue, J. B.; Shen, Q. Q.; Li, G. L.; Liang,W. Chin. J. Inorg. Chem. 2013, 29, 729. [薛晋波, 申倩倩, 李光亮, 梁伟. 无机化学学报, 2013, 29, 729.]
-
[27]
(27) Zhang, S. S.; Zhang, S. Q.; Peng, F.; Zhang, H. M.; Liu, H.W.; Zhao, H. J. Electrochem. Commun. 2011, 13, 861. doi: 10.1016/j.elecom.2011.05.022
-
[28]
(28) Wang, M. Y.; Sun, L.; Lin, Z. Q.; Cai, J. H.; Xie, K. P.; Lin, C. J. Energy Environ. Sci. 2013, 6, 1211. doi: 10.1039/c3ee24162a
-
[29]
(29) McLntyre, N. S.; Cook, M. G. Anal. Chem. 1975, 47, 2208. doi: 10.1021/ac60363a034
-
[30]
(30) Jin, S.; Atrens, A. Appl. Phys. A 1987, 42, 149. doi: 10.1007/BF00616726
-
[31]
(31) Kou, T. Y.; Jin, C. H.; Zhang, C.; Sun, J. Z.; Zhang, Z. H. RSC Adv. 2012, 2, 12636. doi: 10.1039/c2ra21821f
-
[1]
-
-
-
[1]
Pengcheng Yan , Peng Wang , Jing Huang , Zhao Mo , Li Xu , Yun Chen , Yu Zhang , Zhichong Qi , Hui Xu , Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047
-
[2]
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
-
[3]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[4]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[5]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012
-
[6]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[7]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007
-
[8]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030
-
[9]
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
-
[10]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020
-
[11]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[12]
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
-
[13]
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068
-
[14]
Yifan ZHAO , Qiyun MAO , Meijing GUO , Guoying ZHANG , Tongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001
-
[15]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021
-
[16]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[17]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
-
[18]
Jiawei Hu , Kai Xia , Ao Yang , Zhihao Zhang , Wen Xiao , Chao Liu , Qinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043
-
[19]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[20]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019
-
[1]
Metrics
- PDF Downloads(493)
- Abstract views(787)
- HTML views(27)