Citation: JIN Qin, SUN Xiao-Ling, WANG Yan-Ni, WEI Tao, WANG Chao-Jie. Computational Study on the Coordinate Systems of Proline with Cu, Cu+ and Cu2+[J]. Acta Physico-Chimica Sinica, ;2014, 30(7): 1247-1258. doi: 10.3866/PKU.WHXB201405141 shu

Computational Study on the Coordinate Systems of Proline with Cu, Cu+ and Cu2+

  • Received Date: 28 February 2014
    Available Online: 14 May 2014

    Fund Project:

  • The geometric and electronic structures, energetics, and vibrational frequencies of different coordinate systems formed between 15 conformers of proline (Pro) and Cu, Cu+, and Cu2+ were investigated in detail, using the M06-2X and ωB97XDmethods with 6-311++G(2d, p) and TZVPbasis sets.Atotal of 20, 16, and 16 stable [Pro-Cu]0/1+/2+ complexes were obtained at four levels. These structures demonstrated that 12 conformers of Pro exist in the [Pro-Cu] and [Pro-Cu]+ systems, while 11 conformers are present in the [Pro-Cu]2+ complexes. The most stable complexes are evidently not formed by the lowest energy conformer of Pro with Cu, Cu+, and Cu2+. In the CI3, CI4, CII7, and CII8 complexes, the carboxyl group hydrogen of Pro was found to transfer to the imino nitrogen to forma zwitterion. Both the relative energy difference and the deformation energy of Pro gradually increase along with the charge number of the Cu. The binding energies of the [Pro-Cu]0/1+/2+ systems were determined to be in the ranges of -60.0 to -5.0, -340.0 to -170.0, and -1100.0 to -860.0 kJ· mol-1, respectively. The stretching vibrational frequencies of the N―H and O―H bonds in Pro all exhibit a general red shift on complexation. Additionally, each systemshows charge transfer fromthe Pro to the Cu, even in the case of [Pro-Cu]2+, some complexes that have more than one negative charge.

  • 加载中
    1. [1]

      (1) Xiao, H. R.; Shi, C. H.; Xia, B. L.; Sheng, L. Q.; Zhang, Y. G.; Liu, Q. L. Chin. J. Inorg. Chem. 2003, 19, 589. [肖厚荣, 施春华,夏炳乐, 盛良全,张艳鸽, 刘清亮.无机化学学报, 2003, 19, 589.]

    2. [2]

      (2) Wang, J. Y.; Zheng, X. F.; An, L. J.; Gai, H. W.; Hu, J. H. Spectroscopy and Spectral Analysis 2001, 21, 432. [王静云, 郑学仿, 安利佳, 盖宏伟,胡皆汉. 光谱学与光谱分析, 2001, 21, 432.]

    3. [3]

      (3) Zheng, X. F.; Wang, J. Y.; Wang, Y.; An, L. J.; Gai, H. W.; Hu, J. H. Spectroscopy and Spectral Analysis 2001, 21, 804. [郑学仿, 王静云, 王园, 安利佳,盖宏伟, 胡皆汉.光谱学与光谱分析, 2001, 21, 804.]

    4. [4]

      (4) Leary, S. C;Winge, D. R. The Janus Face of Copper: Its Expanding Roles in Biology and the Pathophysiology of Disease. In Copper 06 in Sardinia, the Fifth International Copper Meeting on Copper and Related Metals in Biology, Alghero, Sardinia, Oct 14-18, 2006; Solioz, M., Thiele, D., Mercer, J., Eds.; EMBO Rep: London, 2007; p 224.

    5. [5]

      (5) Brown, D. R.; Hafiz, F.; Glasssmith, L. L.; Wong, B. S.; Jones, I. M.; Clive, C.; Haswell, S. J. EMBO J. 2000, 19, 1180. doi: 10.1093/emboj/19.6.1180

    6. [6]

      (6) Lin, C. J.; Huang, H. C.; Jiang, Z. F. Chemistry of Life 2009, 29, 696. [林昌君, 黄汉昌, 姜招峰. 生命的化学, 2009, 29, 696.]

    7. [7]

      (7) Zhang, Y.; Zhu, J. M.; Liu, C. L. Acta Pharm. Sin. 2012, 47, 399. [张勇,竹俊苗, 刘长林. 药学学报, 2012, 47, 99.]

    8. [8]

      (8) Wang, C. J.; Li, Y.; Yang, X. Y.; Lin, L. Acta Phys. -Chim. Sin. 2007, 23, 305. [王朝杰,李永, 杨新宇,林丽.物理化学学报, 2007, 23, 305.]

    9. [9]

      (9) Li, Y. J.; Zhang, Q. Y.; Chen, Y. T. Chin. J. Inorg. Chem. 1991, 7, 82. [李跃进, 张启衍, 陈荣悌. 无机化学学报, 1991, 7, 82.]

    10. [10]

      (10) Rulisek, L.; Havlas, Z. J. Am. Chem. Soc. 2000, 122, 10428. doi: 10.1021/ja001265g

    11. [11]

      (11) Hoyau, S.; Ohanessian, G. J. Am. Chem. Soc. 1997, 119, 2016. doi: 10.1021/ja963432b

    12. [12]

      (12) Remko, M.; Rode, B. M. J. Phys. Chem. A 2006, 110, 1960. doi: 10.1021/jp054119b

    13. [13]

      (13) Rimola, A.; Santia , L. R.; Uglien , P.; Sodupe, M. J. Phys. Chem. B 2007, 111, 5740. doi: 10.1021/jp071071o

    14. [14]

      (14) Jin, J.; Xu, X. T.; Cong, S. M.; Li, L.; Zhang, G. N.; Niu, S. Y. Acta Phys. -Chim. Sin. 2012, 28, 2549. [金品, 徐晓婷,丛盛美,李雷,张广宁, 牛淑云.物理化学学报, 2012, 28, 2549.]

    15. [15]

      (15) Colaneri, M. J.; Vitali, J.; Peisach, J. J. Phys. Chem. A 2009, 113, 5700. doi: 10.1021/jp811249s

    16. [16]

      (16) Lei, Q. P.; Amster, I. J. J. Am. Soc. Mass Spectrom. 1996, 7, 722. doi: 10.1016/1044-0305(96)80518-6

    17. [17]

      (17) Cheng, W. X.; Chen, H. Y.; Zhang, Y. P.; Feng, Y.; Li, T. H.; Cao, H. Acta Chim. Sin. 2007, 65, 1956. [程伟贤, 陈鸿雁, 张义平,冯宇,李涛洪,曹槐.化学学报, 2007, 65, 1956.]

    18. [18]

      (18) Nyberg, M.; Hasselstrom, J.; Karis, O.; Wassdahl, N.; Weinelt, M.; Nilsson, A.; Pettersson, L. G. M. J. Chem. Phys. 2000, 112, 5420. doi: 10.1063/1.481110

    19. [19]

      (19) Fan, X. L.; Liu, Y.; Du, X. J.; Liu, C.; Zhang, C. Acta Phys. -Chim. Sin. 2013, 29, 263. [范晓丽, 刘燕, 杜秀娟, 刘崇,张超.物理化学学报, 2013, 29, 263.]

    20. [20]

      (20) Shoeib, T.; Hopkinson, A. C.; Siu, K. W. M. J. Phys. Chem. B 2001, 105, 12399.

    21. [21]

      (21) Rai, S.; Kumar, N. V. S.; Singh, H. Bull. Mater. Sci. 2012, 35, 291. doi: 10.1007/s12034-012-0314-6

    22. [22]

      (22) Marino, T.; Russo, N.; Toscano, M. J. Phys. Chem. B 2003, 107, 2588. doi: 10.1021/jp027063j

    23. [23]

      (23) Moision, R. M.; Armentrout, P. B. J. Phys. Chem. A 2006, 110, 3933. doi: 10.1021/jp060230l

    24. [24]

      (24) Wang, C. J.; Cai, Y. P.; Huang, X. H.; Wei, T. Acta Phys. -Chim. Sin. 2011, 27, 352. [王朝杰, 蔡跃飘, 黄旭慧,卫涛.物理化学学报, 2011, 27, 352.]

    25. [25]

      (25) Sun, X. L.; Jin, Q.; Wang, Y. N.; Cai, Y. P.; Wang, C. J. Acta Phys. -Chim. Sin. 2014, 30, 1071. [孙晓玲,金芩,王燕妮, 蔡跃飘, 王朝杰. 物理化学学报, 2014, 30, 1071.]

    26. [26]

      (26) Liu, Y.; Zhao, J. J.; Li, F. Y.; Chen, Z. F. J. Comput. Chem. 2013, 34, 121. doi: 10.1002/jcc.23112

    27. [27]

      (27) Jakubikova, E.; Rappe, A. K.; Bernstein, E. R. J. Phys. Chem. A 2006, 110, 9529.

    28. [28]

      (28) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision B.01; Gaussian Inc.: Wallingford, CT, 2010.

    29. [29]

      (29) Ma, J. C.; Dougherty, D. A. Chem. Rev. 1997, 97, 1303. doi: 10.1021/cr9603744

    30. [30]

      (30) Marino, T.; Russo, N.; Toscano, M. J. Mass Spectrom. 2002, 37, 786.

    31. [31]

      (31) Huang, M. L.; Huang, W. J. J. Quanzhou Norm. Univ. (Nat. Sci.) 2007, 25, 56. [黄妙龄, 黄文姣. 泉州师范学院学报(自然科学), 2007, 25, 56.]


  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    3. [3]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    4. [4]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    5. [5]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    6. [6]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    7. [7]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    8. [8]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    9. [9]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    10. [10]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    11. [11]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    12. [12]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    13. [13]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    14. [14]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    15. [15]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    16. [16]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    17. [17]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    18. [18]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    19. [19]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    20. [20]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

Metrics
  • PDF Downloads(661)
  • Abstract views(649)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return