Citation:
YU Huan, YANG Hui, YAO Rui, GUO Xing-Zhong. Preparation and Characterization of Ag Nanoparticles Embedded in Hierarchically Porous Monolithic Silica[J]. Acta Physico-Chimica Sinica,
;2014, 30(7): 1384-1390.
doi:
10.3866/PKU.WHXB201405122
-
Ag nanoparticles (NPs) were uniformly immobilized in hierarchically porous monolithic silica using γ-(aminopropyl)triethoxysilane (APTES) as a modifier and ethanol as a reductant, where the silica monolith was pre-prepared via the sol-gel accompanied by phase separation. Ag NPs embedded in the hierarchically porous silica monoliths were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), mercury porosimetry, nitrogen adsorption/desorption analysis, and X-ray photoelectron spectroscopy (XPS). The mechanism of the modification by APTES, the reduction using ethanol, and pore structure changes of the silica monolith after immobilization of Ag NPs are discussed. The results show that APTES modifies the monolith by incorporating amino groups onto the surface of the meso-macroporous skeletons, and then amino groups react with silver ions to form a silver-amine complex. Ethanol used as an effective reductant is adopted to promote the reduction process of the silver-amine complex. Ag NPs with an average size of approximately 16 nm were homogeneously supported on both the macroporous skeletons and in the mesopores of the silica monolith with od dispersion. The embedding of Ag NPs did not spoil the macroporous skeleton of the monolithic silica, and the surface area decreased from 418 to 254 m2 ·g-1 after introducing Ag NPs into its macromesopores. It was also found that the loading amount of Ag NPs increased with repeated modification and reduction treatments.
-
-
-
[1]
(1) Rouquerol, J.; Avnir, D.; Fairbridge, C.W.; Everett, D. H.; Haynes, J. H.; Pernicone, N.; Ramsay, J. D. F.; Sing, K. S.W.; Unger, K. K. Pure Appl. Chem. 1994, 8, 66.
-
[2]
(2) Gates, B.; Yin, Y. D.; Xia, Y. N. Chem. Mater. 1999, 11, 2827. doi: 10.1021/cm990195d
-
[3]
(3) Kato, M.; Sakai-Kato, K.; Toyo'oka, T. J. Sep. Sci. 2005, 28, 1893.
-
[4]
(4) Nakanishi, K.; Tanaka, N. Accounts Chem. Res. 2007, 40, 863. doi: 10.1021/ar600034p
-
[5]
(5) Svec, F.; Huber, C. G. Anal. Chem. 2006, 78, 2101.
-
[6]
(6) Wu, P. G.; Xie, P. C.; Imlay, K.; Shang, J. K. J. Am. Ceram. Soc. 2009, 92, 1648. doi: 10.1111/jace.2009.92.issue-8
-
[7]
(7) Khimich, G. N.; Rakhmatullina, E. N.; Slabospitskaya, Y. M.; Tennikova, T. B. Russ. J. Appl. Chem. 2005, 78, 617.
-
[8]
(8) Nishihara, H.; Iwamura, S.; Kyotani, T. J. Mater. Chem. 2008, 18, 3662. doi: 10.1039/b806005c
-
[9]
(9) Yuan, X. Y.; Xu, S.; Lü, J.W.; Yan, X. B.; Hu, L. T.; Xue, Q. J. Microporous Mesoporous Mat. 2011, 138, 40. doi: 10.1016/j.micromeso.2010.09.033
-
[10]
(10) Deng, Q. L.; Li, Y. L.; Zhang, L. H.; Zhang, Y. K. Chin. Chem. Lett. 2011, 22, 1351. doi: 10.1016/j.cclet.2011.05.044
-
[11]
(11) Nakanishi, K. J. Porous Mater. 1997, 4, 67. doi: 10.1023/A:1009627216939
-
[12]
(12) Jinnai, H.; Nakanishi, K.; Nishikawa, Y.; Yamanaka, J.; Hashimoto, T. Langmuir 2001, 17, 619. doi: 10.1021/la000949z
-
[13]
(13) Amatani, T.; Nakanishi, K.; Hirao, K.; Kodaira, T. Chem. Mater. 2005, 17, 2114. doi: 10.1021/cm048091c
-
[14]
(14) Li,W. Y.; Guo, X. Z.; Zhu, Y.; Yang, H.; Kanamori, K.; Nakanishi, K. J. Sol-Gel Sci. Technol. 2013, 67, 639. doi: 10.1007/s10971-013-3123-5
-
[15]
(15) Guo, X. Z.; Li,W. Y.; Yang, H.; Kanamori, K.; Zhu, Y.; Nakanishi, K. J. Sol-Gel Sci. Technol. 2013, 67, 406. doi: 10.1007/s10971-013-3094-6
-
[16]
(16) Nakanishi, K. Bull. Chem. Soc. Jpn. 2006, 79, 673. doi: 10.1246/bcsj.79.673
-
[17]
(17) Kanamori, K. J. Ceram. Soc. Jpn. 2012, 120, 1. doi: 10.2109/jcersj2.120.1
-
[18]
(18) Guo, X. Z.; Li,W. Y.; Nakanishi, K.; Kanamori, K.; Zhu, Y.; Yang, H. J. Eur. Ceram. Soc. 2013, 33, 1967. doi: 10.1016/j.jeurceramsoc.2013.02.018
-
[19]
(19) Guo, X. Z.; Nakanishi, K.; Kanamori, K.; Zhu, Y.; Yang, H. J. Eur. Ceram. Soc. 2014, 34, 817. doi: 10.1016/j.jeurceramsoc.2013.08.016
-
[20]
(20) Yuan, Z. Y.; Su, B. L. J. Mater. Chem. 2006, 16, 663. doi: 10.1039/b512304f
-
[21]
(21) Ahmed, A.; Myers, P.; Zhang, H. F. Anal. Methods 2012, 4, 3942. doi: 10.1039/c2ay25671a
-
[22]
(22) Tang, S.;Wang, L. C.; Han, H. F.; Qiu, H. D.; Liu, X.; Jiang, S. X. Rsc Advances 2013, 3, 7894. doi: 10.1039/c3ra40580j
-
[23]
(23) Akhavan1, O.; Azimirad, R.; Moshfegh, A. Z. J. Phys. D: Appl. Phys. 2008, 41, 1. doi: 10.1051/epjap:2007176
-
[24]
(24) Liu, J. H.;Wang, A. Q.; Chi, Y. S.; Lin, H. P.; Mou, C. Y. J. Phys. Chem. B 2005, 109, 40.
-
[25]
(25) Dorjnamjin, D.; Ariunaa, M.; Shim, Y. K. Int. J. Mol. Sci. 2008, 9, 807. doi: 10.3390/ijms9050807
-
[26]
(26) Ren, X. L.; Meng, X.W.; Tang, F. Q. Sensor. Actuat. B 2005, 110, 358. doi: 10.1016/j.snb.2005.02.016
-
[27]
(27) Pootawang, P.; Lee, S. Y. Mater. Lett. 2012, 80, 1. doi: 10.1016/j.matlet.2012.04.077
-
[28]
(28) Boutros, M.; Trichard, J. M.; Costa, P. D. Appl. Catal. B: Environ. 2009, 91, 640. doi: 10.1016/j.apcatb.2009.07.004
-
[29]
(29) Yong, G. P.; Tian, D.; Tong, H.W.; Liu, S. M. J. Mol. Catal. A: Chem. 2010, 323, 40. doi: 10.1016/j.molcata.2010.03.007
-
[30]
(30) Tian, D.; Yong, G. P.; Dai, Y.; Yan X. Y.; Liu, S. M. Catal. Lett. 2009, 130, 211. doi: 10.1007/s10562-009-9865-6
-
[31]
(31) Qu, Z. P.; Shen, S. J.; Chen D.;Wang, Y. J. Mol. Catal. A: Chem. 2012, 356, 171. doi: 10.1016/j.molcata.2012.01.013
-
[32]
(32) Guo, X. Z.; Li,W. Y.; Zhu, Y.; Nakanishi, K.; Kanamori, K.; Yang, H. Acta Phys. -Chim. Sin. 2013, 29, 1. [郭兴忠, 李文彦, 朱阳, 中西和樹, 金森主祥, 杨辉. 物理化学学报, 2013, 29, 1.]
-
[33]
(34) Nischala, K.; Rao, T. N.; Hebalkar, N. Colloids Surf. B 2011, 82, 203. doi: 10.1016/j.colsurfb.2010.08.039
-
[34]
(35) Sing, K. S.W.; Everett, D. H.; Haul, R. A.W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603.
-
[35]
(36) Maa, J.;Wanga, C.; Peng, K.W. Biomaterials 2003, 24, 3505. doi: 10.1016/S0142-9612(03)00203-5
-
[36]
(37) Kubo, M.; Chaikittisilp,W.; Okubo, T. Chem. Mater. 2008, 20, 2887. doi: 10.1021/cm800371b
-
[37]
(38) Liang, Z.; Susha, A. S.; Yu, A.; Caruso, F. Adv. Mater. 2003, 15, 1849.
-
[1]
-
-
-
[1]
Lele Feng , Xueying Bai , Jifeng Pang , Hongchen Cao , Xiaoyan Liu , Wenhao Luo , Xiaofeng Yang , Pengfei Wu , Mingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100
-
[2]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[3]
Tong Zhou , Liyi Xie , Chuyu Liu , Xiyan Zheng , Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048
-
[4]
Siwei Lv , Tantian Tan , Xinyue Li , Siyan Zhang , Mingyuan Zhang , Minghao Li , Hangshuo Guo , Zhaorong Li , Liangjie Dong , Fengshuo Zhang , Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034
-
[5]
Lijun Yue , Siya Liu , Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005
-
[6]
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
-
[7]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[8]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[9]
Yue Zhang , Bao Li , Lixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038
-
[10]
Haoyu Sun , Dun Li , Yuanyuan Min , Yingying Wang , Yanyun Ma , Yiqun Zheng , Hongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007
-
[11]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067
-
[12]
Zijuan LI , Xuan LÜ , Jiaojiao CHEN , Haiyang ZHAO , Shuo SUN , Zhiwu ZHANG , Jianlong ZHANG , Yanling MA , Jie LI , Zixian FENG , Jiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138
-
[13]
Yiping HUANG , Liqin TANG , Yufan JI , Cheng CHEN , Shuangtao LI , Jingjing HUANG , Xuechao GAO , Xuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224
-
[14]
Wenjun Yang , Qiaoling Tan , Wenjiao Xie , Xiaoyu Pan , Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150
-
[15]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[16]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[17]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[18]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[19]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[20]
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
-
[1]
Metrics
- PDF Downloads(570)
- Abstract views(685)
- HTML views(10)