Citation:
SUN Hai-Jie, LI Yong-Yu, LI Shuai-Hui, ZHANG Yuan-Xin, LIU Shou-Chang, LIU Zhong-Yi, REN Bao-Zeng. ZnSO4 and La2O3 as Co-Modifier of the Monoclinic Ru Catalyst for Selective Hydrogenation of Benzene to Cyclohexene[J]. Acta Physico-Chimica Sinica,
;2014, 30(7): 1332-1340.
doi:
10.3866/PKU.WHXB201405072
-
A nano-scale monometallic Ru(0) catalyst was prepared by the precipitation method, and the effect of using ZnSO4 and La2O3 as co-modifiers on the performance of the catalyst for selective hydrogenation of benzene to cyclohexene was investigated. The catalysts before and after hydrogenation were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), transmission electron microscopy (TEM), and N2-physisorption. It was found that increasing the amount of alkaline La2O3 increased the amount of the ((Zn(OH)2)3(ZnSO4)(H2O)x (x=1, 3) salt formed by the hydrolysis of ZnSO4, which resulted in a gradual decrease of the activity of the Ru(0) catalyst and a gradual increase of the selectivity for cyclohexene. When the molar ratio of La2O3/Ru was 0.075, cyclohexene selectivity of 75.2% and cyclohexene yield of 58.4% at a benzene conversion of 77.6% were achieved in 25 min over the Ru(0) catalyst in the presence of ZnSO4. Moreover, this catalytic system had od reusability. The mass transfer calculation results indicated that the liquid-solid diffusion constraints and pore diffusion limitations could all be ignored. This suggested that the high cyclohexene selectivity and cyclohexene yield could not be simply ascribed to physical effects, and were closely related to the catalyst structure and the catalytic system. Based on the experimental results, we suggest that the surface of the Ru(0) catalyst on which the (Zn(OH)2)3(ZnSO4)(H2O)x (x= 1, 3) salt chemisorbed had two types of active sites for activating the benzene molecules: Ru0 and Zn2+. The ability of Zn2+ to activate benzene was much weaker than that of Ru0 owing to some electron transfer from Zn2+ to Ru0, which was confirmed by the XPS and AES results. Furthermore, Zn2+ could cover some of the Ru active sites because Ru and Zn2+ have similar atomic radii, which decreased the number of Ru0 active sites for activating H2 molecules. As a result, the benzene activated on Zn2+ could only be hydrogenated to cyclohexene, and the activity of the Ru(0) catalyst decreased. A dual active site model is proposed, for the first time, to explain the reaction of benzene hydrogenation over the Ru-based catalyst, and Hückel molecular orbital theory was used to show the reasonableness of the model.
-
Keywords:
-
Benzene
, - Selective hydrogenation,
- Cyclohexene,
- Ruthenium,
- Znic,
- Lanthanum
-
-
-
-
[1]
(1) Lu, F.; Liu, J.; Xu, J. Prog. Chem. 2003, 15, 338. [路芳, 刘菁, 徐杰. 化学进展, 2003, 15, 338.]
-
[2]
(2) Sun, H. J.; Chen, Z. H.; Guo,W.; Zhou, X. L.; Liu, Z. Y.; Liu, S. C. Chin. J. Chem. 2011, 29, 369. doi: 10.1002/cjoc.201190092
-
[3]
(3) Surawanshi, P. T.; Mahajani, V. V. J. Chem. Tech. Biotechnol. 1997, 69, 154.
-
[4]
(4) Nagahara, H.; Ono, M.; Konishi, M.; Fukuoka, Y. Appl. Surf. Sci. 1997, 121 -122, 448.
-
[5]
(5) Wu, J. M.; Yang, Y. F.; Chen, J. L. Chem. Ind. Eng. Prog. 2003, 22, 295. [吴济民, 杨炎锋, 陈聚良. 化工进展, 2003, 22, 295.]
-
[6]
(6) Ning, J. B.; Xu, J.; Liu, J.; Lu, F. Catal. Lett. 2006, 109, 175. doi: 10.1007/s10562-006-0075-1
-
[7]
(7) Sun, H. J.;Wang, H. X.; Jiang, H. B.; Li, S. H.; Liu, S. C.; Liu, Z. Y.; Yuan, X. M.; Yang, K. J. Appl. Catal. A: Gen. 2013, 450, 160. doi: 10.1016/j.apcata.2012.10.016
-
[8]
(8) Sun, H. J.; Pan, Y. J.; Jiang, H. B.; Li, S. H.; Zhang, Y. X.; Liu, S. C.; Liu, Z. Y. Appl. Catal. A: Gen. 2013, 464 -465, 1.
-
[9]
(9) Sun, H. J.; Jiang, H. B.; Li, S. H.;Wang, H. X.; Pan, Y. J.; Dong, Y. Y.; Liu, S. C.; Liu, Z. Y. Chin. J. Catal. 2013, 34, 684. [孙海杰, 江厚兵, 李帅辉, 王红霞, 潘雅洁, 董莹莹, 刘寿长. 刘仲毅. 催化学报, 2013, 34, 684.] doi: 10.1016/S1872-2067(11)60489-0
-
[10]
(10) Sun, H. J.; Pan, Y. J.; Li, S. H.; Zhang, Y. X.; Dong, Y. Y.; Liu, S. C.; Liu. Z. Y. J. Energy Chem. 2013, 22, 710. doi: 10.1016/S2095-4956(13)60094-7
-
[11]
(11) Sun, H. J.; Dong, Y. Y.; Li, S. H.; Jiang, H. B.; Zhang, Y. X.; Liu, Z. Y.; Liu, S. C. J. Mol. Catal. A: Chem. 2013, 368 -369, 119.
-
[12]
(12) Sun, H. J.; Li, S. H.; Zhang, Y. X.; Jiang, H. B.; Qu, L. L.; Liu, S. C.; Liu, Z. Y. Chin. J. Catal. 2013, 34, 1482. [孙海杰, 李帅辉, 张元馨, 江厚兵, 曲良龙, 刘寿长, 刘仲毅. 催化学报, 2013, 34, 1482.]
-
[13]
(13) Zhang, P.;Wu, T. B.; Jiang, T.;Wang,W. T.; Liu, H. Z.; Fan, H. L.; Zhang, Z. F.; Han, B. X. Green Chem. 2012, 15, 152. doi:10.1016/S1872-2067(12)60637-8
-
[14]
(14) Tan, X. H.; Zhou, G. B.; Dou, R. F.; Pei, Y.; Fan, K. N.; Qiao, M. H.; Sun, B.; Zong, B. N. Acta Phys. -Chim. Sin. 2014, 30, 932. [谭晓荷, 周功兵, 窦镕飞, 裴燕, 范康年, 乔明华, 孙斌, 宗保宁. 物理化学学报, 2014, 30, 932.]
-
[15]
(15) Liu, J. L.; Zhu, Y.; Liu, J.; Pei, Y.; Li, Z. H.; Li, H.; Li, H. X.; Qiao, M. H.; Fan, K. N. J. Catal. 2009, 268, 100. doi: 10.1016/j.jcat.2009.09.007
-
[16]
(16) Fan, G. Y.; Li, R. X.; Li, X. J.; Chen, H. Catal. Commun. 2008, 9, 1394. doi: 10.1016/j.catcom.2007.11.039
-
[17]
(17) Sun, H. J.; Jiang, H. B.; Li, S. H.; Dong, Y. Y.;Wang, H. X.; Pan, Y. J.; Liu, S. C.; Tang, M. S.; Liu, Z. Y. Chem. Eng. J. 2013, 218, 415. doi: 10.1016/j.cej.2012.12.041
-
[18]
(18) Struijk, J.; d′Angremond, M.; Lucas-de Regt,W. J. M.; Scholten, J. J. F. Appl. Catal. A: Gen, 1992, 83, 263. doi:10.1016/0926-860X(92)85039-E
-
[19]
(19) Milone, C.; Neri, G.; Donato, A.; Musolino, M. G.; Mercadante, L. J. Catal. 1996, 159, 253. doi: 10.1006/jcat.1996.0086
-
[20]
(20) Folksson, B. Acta Chim. Scand. 1973, 27, 287. doi: 10.3891/acta. chem.scand.27-0287
-
[21]
(21) Nyholm, R.; Martensson, N. J. Phys. C 1980, 13, 1279.
-
[22]
(22) Moretti, G.; Fierro, G.; Lo Jacono, M.; Porta, P. Surf. Interface Anal. 1989, 14, 325.
-
[23]
(23) Ramos-Fernández, E. V.; Ferreira, A. F. P.; Sepúlveda-Escribano, A.; Kapteijn, F.; Rodríguez-Reinoso, F. J. Catal. 2008, 258, 52. doi: 10.1016/j.jcat.2008.05.025
-
[24]
(24) Su, F. B.; Lee, F. Y.; Lv, L.; Liu, J.; Tian, X. N.; Zhao, X. S. Adv. Funct. Mater. 2007, 17, 1926.
-
[25]
(25) Hu, S. C.; Chen, Y.W. Ind. Eng. Chem. Res. 1997, 36, 5153. doi: 10.1021/ie970300y
-
[26]
(26) Liu, H. Z.; Jiang, T.; Han, B. X.; Liang, S. G.; Zhou, Y. X. Science 2009, 326, 1250. doi: 10.1126/science.1179713
-
[27]
(27) Marchi, A. J.; rdo, D. A.; Trasrti, A. F.; Apesteguía, C. R. Appl. Catal. A: Gen. 2003, 249, 53. doi: 10.1016/S0926-860X(03)00199-6
-
[1]
-
-
-
[1]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[2]
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
-
[3]
Xuefei Zhao , Xuhong Hu , Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, 2025, 40(8): 360-367. doi: 10.12461/PKU.DXHX202410008
-
[4]
Anqiu LIU , Long LIN , Dezhi ZHANG , Junyu LEI , Kefeng WANG , Wei ZHANG , Junpeng ZHUANG , Haijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424
-
[5]
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
-
[6]
Shuhong Xiang , Lv Yang , Yingsheng Xu , Guoxin Cao , Hongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097
-
[7]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[8]
Fa Wang , Yu Chen , Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024
-
[9]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[10]
Ke QIAO , Yanlin LI , Shengli HUANG , Guoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265
-
[11]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[12]
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
-
[13]
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
-
[14]
Ling Liu , Haibin Wang , Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080
-
[15]
Feng Sha , Xinyan Wu , Ping Hu , Wenqing Zhang , Xiaoyang Luan , Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082
-
[16]
Wanmin Cheng , Juan Du , Peiwen Liu , Yiyun Jiang , Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066
-
[17]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[18]
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
-
[19]
Shahua Huang , Xiaoming Guo , Lin Lin , Guangping Chang , Sheng Han , Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064
-
[20]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[1]
Metrics
- PDF Downloads(494)
- Abstract views(878)
- HTML views(10)