Citation: WANG Xin-Huan, HAN Qiu-Sen, LI Jing-Ying, YANG Rong, DIAO Guo-Wang, WANG Chen. Seedless Synthesis of ld Nanorods and Applications in Photo-Thermal Cancer Therapy[J]. Acta Physico-Chimica Sinica, ;2014, 30(7): 1363-1369. doi: 10.3866/PKU.WHXB201405063 shu

Seedless Synthesis of ld Nanorods and Applications in Photo-Thermal Cancer Therapy

  • Received Date: 17 March 2014
    Available Online: 6 May 2014

    Fund Project:

  • We report the synthesis of ld nanorods with a simple and efficient seedless method. By changing the experimental conditions, the longitudinal absorption peak of the ld nanorods can be shifted from the visible to the near-infrared region. Mercaptopolyethylene glycol (PEG-SH) was then used to substitute cetyltrimethyl ammoniumbromide (CTAB) to improve the biocompatibility of the ld nanorods. A strong inhibition of cancer cell growth was observed with the modified ld nanorods under near-infrared (NIR) light irradiation. Our results will be helpful for the potential applications of ld nanorods in clinical photo-thermal cancer therapy.

  • 加载中
    1. [1]

      (1) Dubertret, B.; Calame, M.; Libchaber, A. J. Nat. Biotechnol. 2001, 19, 365. doi: 10.1038/86762

    2. [2]

      (2) Zhu, J.; Shen, Y.; Xie, A.; Qiu, L.; Zhang, Q.; Zhang, S. J. Phys. Chem. C 2007, 111, 7629. doi: 10.1021/jp0711850

    3. [3]

      (3) Chen, J.; Saeki, F.; Wiley, B. J.; Cang, H.; Cobb, M. J.; Li, Z. Y.; Au, L.; Zhang, H.; Kimmey, M. B.; Li; Xia, Y. Nano Lett. 2005, 5, 473-477. doi: 10.1021/nl047950t

    4. [4]

      (4) Grabar, K. C.; Allison, K. J.; Baker, B. E.; Bright, R. M.; Brown, K. R.; Freeman, R. G.; Fox, A. P.; Keating, C. D.; Musick, M. D.; Natan, M. J. Colloids Surf. A 1996, 12, 2353. doi: 10.1021/la950561h

    5. [5]

      (5) Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Coord. Chem. Rev. 2005, 249, 1870. doi: 10.1016/j.ccr.2005.01.030

    6. [6]

      (6) Sharma, V.; Park, K.; Srinivasarao, M. Mater. Sci. Eng. R 2009, 65, 1. doi: 10.1016/j.mser.2009.02.002

    7. [7]

      (7) Daniel, M. C.; Astruc, D. Chem. Rev. 2003, 104, 293.

    8. [8]

      (8) Ali, M. R.; Snyder, B.; El-Sayed, M. A. Langmuir 2012, 28, 9807. doi: 10.1021/la301387p

    9. [9]

      (9) Van der Zande, B. M. I.; Böhmer, M. R.; Fokkink, L. G. J.; Schönenberger, C. Langmuir 1999, 16, 451.

    10. [10]

      (10) Hough, C. D.; Sherman-Baust, C. A.; Pizer, E. S.; Montz, F. J.; Im, D. D.; Rosenshein, N. B.; Cho, K. R.; Riggins, G. J.; Morin, P. J. Cancer Res. 2000, 60, 6281.

    11. [11]

      (11) Wang, Z.; Su, Y. K.; Li, H. L. Appl. Phys. A 2002, 74, 563.

    12. [12]

      (12) Shao, G. N.; Zhang, X. T.; Liu, B. Modern Chemical Industry 2006, 26, 44. [邵桂妮,张兴堂,刘兵.现代化工, 2006, 26, 44.]

    13. [13]

      (13) Connor, E. E.; Mwamuka, J.; le, A.; Murphy, C. J.; Wyatt, M. D. Small 2005, 1, 325.

    14. [14]

      (14) Nikoobakht, B.; El-Sayed, M. A. J. Phys. Chem. A 2003, 107, 3372.

    15. [15]

      (15) Jana, N. R.; Gearheart, L.; Murphy, C. J. Chem. Mater. 2001, 13, 2313. doi: 10.1021/cm000662n

    16. [16]

      (16) Murphy, C. J.; Jana, N. R. Adv. Mater. 2002, 14, 80.

    17. [17]

      (17) Jana, N. R. Small 2005, 1, 875.

    18. [18]

      (18) Thakor, A. S.; Gambhir, S. S. CA -Cancer J. Clin. 2013, 63, 395. doi: 10.3322/caac.21199

    19. [19]

      (19) Wang, M. F.; Li, X. M. The Practical Journal of Cancer 2006, 4, 445. [王梅芳,李小妹. 实用癌症杂志, 2006, 4, 445. ]

    20. [20]

      (20) Svaasand, L.; mer, C.; Morinelli, E. Laser Med. Sci. 1990, 5, 121.

    21. [21]

      (21) Lu, H.; Chen, L. B. Journal of Medical Postgraduat. 2004, 17, 458. [鹿红, 陈龙帮.医学研究生学报, 2004, 17, 458. ]

    22. [22]

      (22) Liu, B. R.; Qian, X. P. Foreign Medical Sciences (Cancer Section) 2004, 31, 34 [刘宝瑞, 钱晓萍. 国外医学(肿瘤学分册), 2004, 31, 34.]

    23. [23]

      (23) Sharma, P.; Brown, S.; Walter, G.; Santra, S.; Moudgil, B. Adv. Colloid Interface Sci. 2006, 123, 471.

    24. [24]

      (24) El-Sayed, M. A. Accounts Chem. Res. 2001, 34, 257. doi: 10.1021/ar960016n

    25. [25]

      (25) Katz, E.;Willner, I. Angew. Chem. Int. Edit. 2004, 43, 6042.

    26. [26]

      (26) El-Sayed, I. H.; Huang, X.; El-Sayed, M. A. Cancer Lett. 2006, 239, 129. doi: 10.1016/j.canlet.2005.07.035

    27. [27]

      (27) Zharov, V. P.; Galitovsky, V.; Viegas, M. Appl. Phys. Lett. 2003, 83, 4897.

    28. [28]

      (28) Pitsillides, C. M.; Joe, E. K.; Wei, X.; Anderson, R. R.; Lin, C. P. Biophys. J. 2003, 84, 4023. doi: 10.1016/S0006-3495(03)75128-5

    29. [29]

      (29) Kam, N. W. S.; O'Connell, M.; Wisdom, J. A.; Dai, H. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 11600. doi: 10.1073/pnas.0502680102

    30. [30]

      (30) O'Neal, D. P.; Hirsch, L. R.; Halas, N. J.; Payne, J. D.; West, J. L. Cancer Lett. 2004, 209, 171. doi: 10.1016/j.canlet.2004.02.004

    31. [31]

      (31) Chen, J.;Wiley, B.; Li, Z. Y.; Campbell, D.; Saeki, F.; Cang, H.; Au, L.; Lee, J.; Li, X.; Xia, Y. Adv. Mater. 2005, 17, 2255.

    32. [32]

      (32) Hu, M.; Petrova, H.; Chen, J.; McLellan, J. M.; Siekkinen, A. R.; Marquez, M.; Li, X.; Xia, Y.; Hartland, G. V. J. Phys. Chem. B 2006, 110, 1520. doi: 10.1021/jp0571628

    33. [33]

      (33) Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. J. Am. Chem. Soc. 2006, 128, 2115. doi: 10.1021/ja057254a

    34. [34]

      (34) Takahashi, H.; Niidome, T.; Nariai, A.; Niidome, Y.; Yamada, S. Chem. Lett. 2006, 35, 500. doi: 10.1246/cl.2006.500

    35. [35]

      (35) Li, Z. M.; Huang, P.; Zhang, X. J.; Lin, J.; Yang, S.; Liu, B.; Gao, F.; Xi, P.; Ren, Q. S.; Cui, D. X. Mol. Pharm. 2010, 7, 94.


  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    3. [3]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    4. [4]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    5. [5]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    6. [6]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    7. [7]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    8. [8]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    9. [9]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    10. [10]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    11. [11]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    12. [12]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    13. [13]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    14. [14]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    15. [15]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    16. [16]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    17. [17]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    18. [18]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    19. [19]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    20. [20]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

Metrics
  • PDF Downloads(957)
  • Abstract views(916)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return