Citation:
FAN Ren-Jie, LIN Rui, HUANG Zhen, ZHAO Tian-Tian, MA Jian-Xin. Preparation and Characterization of Pt Catalysts Supported on Cobalt-Polypyrrole-Carbon for Fuel Cells[J]. Acta Physico-Chimica Sinica,
;2014, 30(7): 1259-1266.
doi:
10.3866/PKU.WHXB201405045
-
Pt/cobalt-polypyrrole-carbon (Co-PPy-C)-supported catalysts were successfully prepared by pulse-microwave assisted chemical reduction. Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) techniques were used to characterize the catalyst microstructure and morphology. The electrocatalytic performance, kinetic characteristics of the oxygen reduction reaction (ORR), and durability of the catalysts were measured by cyclic voltammetry (CV) and linear sweep voltammetry (LSV) techniques. It was found that the particle size of Pt/Co-PPy-C was about 1.8 nm, which was smaller than that of commercial Pt/C (JM) catalysts (2.5 nm). The metal particles were well-dispersed on the carbon support. The electrochemical specific area (ECSA) of Pt/Co-PPy-C (75.1 m2· g-1) was much higher than that of Pt/C (JM) (51.3 m2·g-1). The results of XPS showed that most of the Pt in the catalysts was in the Pt(0) state, and XRD results showed that the form of Pt was mainly the facecentered cubic lattice. The Pt/Co-PPy-C catalyst had the same half-wave potential as Pt/C (JM) and showed higher ORR activity. The Pt/Co-PPy-C catalyst proceeded by an approximately four-electron pathway in acid solution. After 1000 cycles of CV, the ECSA attenuation rates of Pt/Co-PPy-C and Pt/C were 13.0% and 24.0% respectively, which means that the Pt/Co-PPy-C catalyst has higher durability. The high performance of Pt/Co-PPy-C makes it a promising catalyst for proton exchange membrane fuel cells.
-
-
-
[1]
(1) Zhang, J.; Tang, S. H.; Liao, L. Y.; Yu,W. F. Chin. J. Catal. 2013, 34, 1051. [张洁, 唐水花, 廖龙渝, 郁卫飞. 催化学报, 2013, 34, 1051.]
-
[2]
(2) Wee, J. H.; Lee, K. Y.; Kim, S. H. J. Power Sources 2007, 165, 667. doi: 10.1016/j.jpowsour.2006.12.051
-
[3]
(3) Yin, S. B.; Mu, S. C.; Pan, M.; Fu, Z. Y. J. Power Sources 2011, 196, 7931. doi: 10.1016/j.jpowsour. 2011.05.033
-
[4]
(4) Yan, X. H. Zhang, G. R.; Xu, B. Q. Chin. J. Catal. 2013, 34, 1992. [严祥辉, 张贵荣, 徐柏庆. 催化学报, 2013, 34, 1992.]
-
[5]
(5) Wang, S. Y.; Jiang, S. P.;Wang, X. Nanotechnology 2008, 19, 265601. doi: 10.1088/0957-4484/19/26/265601
-
[6]
(6) He, D. P.; Zeng, C.; Xu, C.; Cheng, N. C.; Li, H. G.; Mu, S. C.; Pan, M. Langmuir 2011, 27, 5582. doi: 10.1021/la2003589
-
[7]
(7) Zhao, Y. C.; Lan, H. X.; Tian, J. N.; Yang, X. L.;Wang, F. Y. Acta Phys. -Chim. Sin. 2009, 25 (10), 2050. [赵彦春, 兰黄鲜, 田建袅, 杨秀林, 王凤阳. 物理化学学报, 2009, 25 (10), 2050.]
-
[8]
(8) Zhao, Y. C.; Lan, H. X.; Deng, B. B.; Tian, J. N.; Yang, X. L.; Wang, F. Y. Acta Phys. -Chim. Sin. 2010, 26 (8), 2255. [赵彦春, 兰黄鲜, 邓彬彬, 田建袅, 杨秀林, 王凤阳. 物理化学学报, 2010, 26 (8), 2255.]
-
[9]
(9) Dai, X. F.; Zheng, M. F.; Xu, P.; Shi, J. J.; Ma, C. Y.; Qiao, J. L. Acta Phys. -Chim. Sin. 2013, 29 (8), 1753. [戴先逢, 郑明富, 徐攀, 石晶晶, 马承禺, 乔锦丽. 物理化学学报, 2013, 29 (8), 1753.]
-
[10]
(10) Li, S.;Wang, J. T.; Chen, R. X.; Zhao,W.; Qian, L.; Pan, M. Acta Phys. -Chim. Sin. 2013, 29 (4), 792. [李赏, 王家堂, 陈锐鑫, 赵伟, 钱柳, 潘牧. 物理化学学报, 2013, 29 (4), 792.]
-
[11]
(11) Bensebaa, F.; Farah, A. A.;Wang, D.; Bock, C.; Du, X. M.; Kung, J.; Page, Y. L. J. Phys. Chem. B 2005, 109 (32), 15339. doi: 10.1021/jp0519870
-
[12]
(12) Qiao, J. L.; Xu, L.; Ding, L.; Zhang, L.; Baker, R.; Dai, X. F.; Zhang, J. J. Appl. Catal. B-Environ. 2012, 125, 197.
-
[13]
(13) Ding, L.; Qiao, J. L.; Dai, X. F.; Zhang, J.; Zhang, J. J.; Tian, B. L. Int. J. Hydrog. Energy 2012, 37 (19), 14103. doi: 10.1016/j.ijhydene.2012.07.046
-
[14]
(14) Zhang, H. J.; Li, H. L.; Li, X. T.; Qiu, H. X.; Yuan, X. X.; Zhao, B.; Ma, Z. F.; Yang, J. H. Int. J. Hydrog. Energy 2014, 39 (1), 267. doi: 10.1016/j.ijhydene.2013.09.084
-
[15]
(15) Zhang, H. J.; Yuan, X. X.;Wang, Z. H.; Yang, J. H.; Ma, Z. F. Electrochim. Acta 2013, 87, 599. doi: 10.1016/j. electacta.2012.10.019
-
[16]
(16) Huang, S. Y.; Ganesan, P.; Popov, B. N. Appl. Catal. B-Environ. 2009, 93, 75. doi: 10.1016/j.apcatb.2009.09.014
-
[17]
(17) Yuasa, M.; Yamaguchi, A.; Itsuki, H.; Tanaka, K.; Yamamoto, M.; Oyaizu, K. Chem. Mater. 2005, 17, 4278.
-
[18]
(18) Zhao, H. B.; Li, L.; Yang, J.; Zhang, Y. M. J. Power Sources 2008, 184, 375. doi: 10.1016/j.jpowsour.2008.03.024
-
[19]
(19) Zhao, H. B.; Li, L.; Yang, J.; Zhang, Y. M.; Li, H. Electrochem. Commun. 2008, 10, 876. doi: 10.1016/j.elecom.2008.04.005
-
[20]
(20) Dyer, C. K.; Moseley, P. T.; Ogumi, Z.; Rand, D. A. J.; Scrosati, B.; Garche, J. Encyclopedia of Electrochemical Power Sources, 1st ed.; Elsevier Science Ltd: Amsterdam. 2009, pp 639-649.
-
[21]
(21) Tian, J.; Birry, L.; Jaouen, F.; Dodelet, J. P. Electrochim. Acta 2011, 56 (9), 3276. doi: 10.1016/j.electacta.2011.01.029
-
[22]
(22) Jaouen, F.; ellner, V.; Lefèvre, M.; Herranz, J.; Proietti, E.; Dodelet, J. P. Electrochim. Acta 2013, 87, 619. doi: 10.1016/j.electacta.2012.09.057
-
[23]
(23) Yuasa, M.; Yamaguchi, A.; Itsuki, H.; Tanaka, K.; Yamamoto, M.; Oyaizu, K. Chem. Mater. 2005, 17, 4278.
-
[24]
(24) Bashyam, R.; Zelenay, P. Nature 2006, 443, 63. doi: 10.1038/nature05118
-
[25]
(25) Lee, K. C.; Zhang, L.; Lui, H. S.; Hui, R.; Shi, Z.; Zhang, J. J. Electrochim. Acta 2009, 54, 4704. doi: 10.1016/j. electacta. 2009.03.081
-
[26]
(26) Nguyen-Thanh, D.; Frenkel, A. I.;Wang, J. Q.; O′Brien, S.; Akins, D. L. Appl. Catal. B-Environ. 2011, 105, 50. doi: 10.1016/j.apcatb.2011.03.034
-
[27]
(27) Yu,W. Y.; Tu,W. X.; Liu, H. F. Langmuir 1999, 15 (1), 6. doi: 10.1021/la9806505
-
[28]
(28) Gan, L.; Du, H. D.; Li, B. H.; Kang, F. Y. New Carbon Mater. 2010, 25, 53. doi: 10.1016/S1872-5805(09)60015-9
-
[29]
(29) Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.;Wagner, F. T. Appl. Catal. B-Environ. 2005, 56, 9. doi: 10.1016/j.apcatb.2004.06.021
-
[30]
(30) Vivek, S. M.; Elise, I.;Wu, B.; Lesia, P. V. D. Highly Dispersed Alloy Catalyst for Durability. http://www. hydrogen. energy. v/pdfs/progress11/v_d_2_murthi_2011.pdf (accessed Mar 20, 2014)
-
[31]
(31) Lee, M. H.; Do, J. S. J. Power Sources 2009, 188, 353. doi: 10.1016/j.jpowsour.2008.12.051
-
[1]
-
-
-
[1]
Xichen YAO , Shuxian WANG , Yun WANG , Cheng WANG , Chuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384
-
[2]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[3]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[4]
Yixuan Wang , Canhui Zhang , Xingkun Wang , Jiarui Duan , Kecheng Tong , Shuixing Dai , Lei Chu , Minghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004
-
[5]
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
-
[6]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005
-
[7]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[8]
Zhaoyu Wen , Na Han , Yanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001
-
[9]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[10]
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
-
[11]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012
-
[12]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[13]
Xueting Feng , Ziang Shang , Rong Qin , Yunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005
-
[14]
Dong Xiang , Kunzhen Li , Kanghua Miao , Ran Long , Yujie Xiong , Xiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027
-
[15]
Huirong BAO , Jun YANG , Xiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008
-
[16]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[17]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[18]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[19]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[20]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[1]
Metrics
- PDF Downloads(627)
- Abstract views(817)
- HTML views(2)