Citation: FAN Ren-Jie, LIN Rui, HUANG Zhen, ZHAO Tian-Tian, MA Jian-Xin. Preparation and Characterization of Pt Catalysts Supported on Cobalt-Polypyrrole-Carbon for Fuel Cells[J]. Acta Physico-Chimica Sinica, ;2014, 30(7): 1259-1266. doi: 10.3866/PKU.WHXB201405045 shu

Preparation and Characterization of Pt Catalysts Supported on Cobalt-Polypyrrole-Carbon for Fuel Cells

  • Received Date: 27 March 2014
    Available Online: 4 May 2014

    Fund Project:

  • Pt/cobalt-polypyrrole-carbon (Co-PPy-C)-supported catalysts were successfully prepared by pulse-microwave assisted chemical reduction. Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) techniques were used to characterize the catalyst microstructure and morphology. The electrocatalytic performance, kinetic characteristics of the oxygen reduction reaction (ORR), and durability of the catalysts were measured by cyclic voltammetry (CV) and linear sweep voltammetry (LSV) techniques. It was found that the particle size of Pt/Co-PPy-C was about 1.8 nm, which was smaller than that of commercial Pt/C (JM) catalysts (2.5 nm). The metal particles were well-dispersed on the carbon support. The electrochemical specific area (ECSA) of Pt/Co-PPy-C (75.1 m2· g-1) was much higher than that of Pt/C (JM) (51.3 m2·g-1). The results of XPS showed that most of the Pt in the catalysts was in the Pt(0) state, and XRD results showed that the form of Pt was mainly the facecentered cubic lattice. The Pt/Co-PPy-C catalyst had the same half-wave potential as Pt/C (JM) and showed higher ORR activity. The Pt/Co-PPy-C catalyst proceeded by an approximately four-electron pathway in acid solution. After 1000 cycles of CV, the ECSA attenuation rates of Pt/Co-PPy-C and Pt/C were 13.0% and 24.0% respectively, which means that the Pt/Co-PPy-C catalyst has higher durability. The high performance of Pt/Co-PPy-C makes it a promising catalyst for proton exchange membrane fuel cells.

  • 加载中
    1. [1]

      (1) Zhang, J.; Tang, S. H.; Liao, L. Y.; Yu,W. F. Chin. J. Catal. 2013, 34, 1051. [张洁, 唐水花, 廖龙渝, 郁卫飞. 催化学报, 2013, 34, 1051.]

    2. [2]

      (2) Wee, J. H.; Lee, K. Y.; Kim, S. H. J. Power Sources 2007, 165, 667. doi: 10.1016/j.jpowsour.2006.12.051

    3. [3]

      (3) Yin, S. B.; Mu, S. C.; Pan, M.; Fu, Z. Y. J. Power Sources 2011, 196, 7931. doi: 10.1016/j.jpowsour. 2011.05.033

    4. [4]

      (4) Yan, X. H. Zhang, G. R.; Xu, B. Q. Chin. J. Catal. 2013, 34, 1992. [严祥辉, 张贵荣, 徐柏庆. 催化学报, 2013, 34, 1992.]

    5. [5]

      (5) Wang, S. Y.; Jiang, S. P.;Wang, X. Nanotechnology 2008, 19, 265601. doi: 10.1088/0957-4484/19/26/265601

    6. [6]

      (6) He, D. P.; Zeng, C.; Xu, C.; Cheng, N. C.; Li, H. G.; Mu, S. C.; Pan, M. Langmuir 2011, 27, 5582. doi: 10.1021/la2003589

    7. [7]

      (7) Zhao, Y. C.; Lan, H. X.; Tian, J. N.; Yang, X. L.;Wang, F. Y. Acta Phys. -Chim. Sin. 2009, 25 (10), 2050. [赵彦春, 兰黄鲜, 田建袅, 杨秀林, 王凤阳. 物理化学学报, 2009, 25 (10), 2050.]

    8. [8]

      (8) Zhao, Y. C.; Lan, H. X.; Deng, B. B.; Tian, J. N.; Yang, X. L.; Wang, F. Y. Acta Phys. -Chim. Sin. 2010, 26 (8), 2255. [赵彦春, 兰黄鲜, 邓彬彬, 田建袅, 杨秀林, 王凤阳. 物理化学学报, 2010, 26 (8), 2255.]

    9. [9]

      (9) Dai, X. F.; Zheng, M. F.; Xu, P.; Shi, J. J.; Ma, C. Y.; Qiao, J. L. Acta Phys. -Chim. Sin. 2013, 29 (8), 1753. [戴先逢, 郑明富, 徐攀, 石晶晶, 马承禺, 乔锦丽. 物理化学学报, 2013, 29 (8), 1753.]

    10. [10]

      (10) Li, S.;Wang, J. T.; Chen, R. X.; Zhao,W.; Qian, L.; Pan, M. Acta Phys. -Chim. Sin. 2013, 29 (4), 792. [李赏, 王家堂, 陈锐鑫, 赵伟, 钱柳, 潘牧. 物理化学学报, 2013, 29 (4), 792.]

    11. [11]

      (11) Bensebaa, F.; Farah, A. A.;Wang, D.; Bock, C.; Du, X. M.; Kung, J.; Page, Y. L. J. Phys. Chem. B 2005, 109 (32), 15339. doi: 10.1021/jp0519870

    12. [12]

      (12) Qiao, J. L.; Xu, L.; Ding, L.; Zhang, L.; Baker, R.; Dai, X. F.; Zhang, J. J. Appl. Catal. B-Environ. 2012, 125, 197.

    13. [13]

      (13) Ding, L.; Qiao, J. L.; Dai, X. F.; Zhang, J.; Zhang, J. J.; Tian, B. L. Int. J. Hydrog. Energy 2012, 37 (19), 14103. doi: 10.1016/j.ijhydene.2012.07.046

    14. [14]

      (14) Zhang, H. J.; Li, H. L.; Li, X. T.; Qiu, H. X.; Yuan, X. X.; Zhao, B.; Ma, Z. F.; Yang, J. H. Int. J. Hydrog. Energy 2014, 39 (1), 267. doi: 10.1016/j.ijhydene.2013.09.084

    15. [15]

      (15) Zhang, H. J.; Yuan, X. X.;Wang, Z. H.; Yang, J. H.; Ma, Z. F. Electrochim. Acta 2013, 87, 599. doi: 10.1016/j. electacta.2012.10.019

    16. [16]

      (16) Huang, S. Y.; Ganesan, P.; Popov, B. N. Appl. Catal. B-Environ. 2009, 93, 75. doi: 10.1016/j.apcatb.2009.09.014

    17. [17]

      (17) Yuasa, M.; Yamaguchi, A.; Itsuki, H.; Tanaka, K.; Yamamoto, M.; Oyaizu, K. Chem. Mater. 2005, 17, 4278.

    18. [18]

      (18) Zhao, H. B.; Li, L.; Yang, J.; Zhang, Y. M. J. Power Sources 2008, 184, 375. doi: 10.1016/j.jpowsour.2008.03.024

    19. [19]

      (19) Zhao, H. B.; Li, L.; Yang, J.; Zhang, Y. M.; Li, H. Electrochem. Commun. 2008, 10, 876. doi: 10.1016/j.elecom.2008.04.005

    20. [20]

      (20) Dyer, C. K.; Moseley, P. T.; Ogumi, Z.; Rand, D. A. J.; Scrosati, B.; Garche, J. Encyclopedia of Electrochemical Power Sources, 1st ed.; Elsevier Science Ltd: Amsterdam. 2009, pp 639-649.

    21. [21]

      (21) Tian, J.; Birry, L.; Jaouen, F.; Dodelet, J. P. Electrochim. Acta 2011, 56 (9), 3276. doi: 10.1016/j.electacta.2011.01.029

    22. [22]

      (22) Jaouen, F.; ellner, V.; Lefèvre, M.; Herranz, J.; Proietti, E.; Dodelet, J. P. Electrochim. Acta 2013, 87, 619. doi: 10.1016/j.electacta.2012.09.057

    23. [23]

      (23) Yuasa, M.; Yamaguchi, A.; Itsuki, H.; Tanaka, K.; Yamamoto, M.; Oyaizu, K. Chem. Mater. 2005, 17, 4278.

    24. [24]

      (24) Bashyam, R.; Zelenay, P. Nature 2006, 443, 63. doi: 10.1038/nature05118

    25. [25]

      (25) Lee, K. C.; Zhang, L.; Lui, H. S.; Hui, R.; Shi, Z.; Zhang, J. J. Electrochim. Acta 2009, 54, 4704. doi: 10.1016/j. electacta. 2009.03.081

    26. [26]

      (26) Nguyen-Thanh, D.; Frenkel, A. I.;Wang, J. Q.; O′Brien, S.; Akins, D. L. Appl. Catal. B-Environ. 2011, 105, 50. doi: 10.1016/j.apcatb.2011.03.034

    27. [27]

      (27) Yu,W. Y.; Tu,W. X.; Liu, H. F. Langmuir 1999, 15 (1), 6. doi: 10.1021/la9806505

    28. [28]

      (28) Gan, L.; Du, H. D.; Li, B. H.; Kang, F. Y. New Carbon Mater. 2010, 25, 53. doi: 10.1016/S1872-5805(09)60015-9

    29. [29]

      (29) Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.;Wagner, F. T. Appl. Catal. B-Environ. 2005, 56, 9. doi: 10.1016/j.apcatb.2004.06.021

    30. [30]

      (30) Vivek, S. M.; Elise, I.;Wu, B.; Lesia, P. V. D. Highly Dispersed Alloy Catalyst for Durability. http://www. hydrogen. energy. v/pdfs/progress11/v_d_2_murthi_2011.pdf (accessed Mar 20, 2014)

    31. [31]

      (31) Lee, M. H.; Do, J. S. J. Power Sources 2009, 188, 353. doi: 10.1016/j.jpowsour.2008.12.051


  • 加载中
    1. [1]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    5. [5]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    6. [6]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    7. [7]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    8. [8]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    11. [11]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    14. [14]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    15. [15]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    16. [16]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    17. [17]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    18. [18]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

Metrics
  • PDF Downloads(627)
  • Abstract views(816)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return