Citation: ZHAO Jian, ZHOU Wei, MA Jian-Xin. Effect of CO2 Pretreatment Operation Conditions on the Catalytic Performance and Structure of Ni-Co Bimetallic Catalyst[J]. Acta Physico-Chimica Sinica, ;2014, 30(7): 1325-1331. doi: 10.3866/PKU.WHXB201405042 shu

Effect of CO2 Pretreatment Operation Conditions on the Catalytic Performance and Structure of Ni-Co Bimetallic Catalyst

  • Received Date: 6 February 2014
    Available Online: 4 May 2014

    Fund Project:

  • The performance of the Ni-Co bimetallic catalyst was significantly improved by a novel H2 and CO2 (HCD) pretreatment in the dry reforming of methane compared with traditional H2 pretreatment. The effects of the HCD pretreatment operating conditions, such as pretreatment time, temperature, gas feeding ratio, and gas flow rate, on the catalytic performance of Ni-Co bimetallic catalyst were investigated. The optimal pretreatment time, temperature, gas feeding ratio (CH4/CO2), and gas flow rate were 0.5-1 h, 780-800 ℃, 0:10, and 175-200 mL·min-1, respectively. Biogas was simulated with CH4 and CO2 in a volume ratio of 1 and without any other diluted gas. The catalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetry (TG) coupled to differential scanning calorimetry (DSC). In a 511 h stability test under the optimized operating conditions, the catalyst pretreated with both H2 and CO2 exhibited excellent stability. The average conversions of CH4 and CO2, selectivities for H2 and CO, and volume ratio of H2/CO were 96%, 97%, 98%, 99%, and 0.98, respectively. The average carbon deposition rate over the Ni-Co bimetallic catalyst was only about 0.2 mg·g-1·h-1. The characterization results revealed that the sintering speed of the metal greatly decreased with testing time, and the metal particle will not greatly sinter with further testing time. The amount of deposited carbon on the catalyst gradually decreased and growth of filamentous carbon over the surface of the catalyst could be inhibited. The performance of the Ni-Co bimetallic catalyst was significantly improved by a novel H2 and CO2 (HCD) pretreatment in the dry reforming of methane compared with traditional H2 pretreatment. The effects of the HCD pretreatment operating conditions, such as pretreatment time, temperature, gas feeding ratio, and gas flow rate, on the catalytic performance of Ni-Co bimetallic catalyst were investigated. The optimal pretreatment time, temperature, gas feeding ratio (CH4/CO2), and gas flow rate were 0.5-1 h, 780-800 ℃, 0:10, and 175-200 mL·min-1, respectively. Biogas was simulated with CH4 and CO2 in a volume ratio of 1 and without any other diluted gas. The catalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetry (TG) coupled to differential scanning calorimetry (DSC). In a 511 h stability test under the optimized operating conditions, the catalyst pretreated with both H2 and CO2 exhibited excellent stability. The average conversions of CH4 and CO2, selectivities for H2 and CO, and volume ratio of H2/CO were 96%, 97%, 98%, 99%, and 0.98, respectively. The average carbon deposition rate over the Ni-Co bimetallic catalyst was only about 0.2 mg·g-1·h-1. The characterization results revealed that the sintering speed of the metal greatly decreased with testing time, and the metal particle will not greatly sinter with further testing time. The amount of deposited carbon on the catalyst gradually decreased and growth of filamentous carbon over the surface of the catalyst could be inhibited. Thereby, great catalytic activity and stability could be obtained during the dry reforming of methane reaction.

  • 加载中
    1. [1]

      (1) Lombardi, L.; Carnevale, E.; Corti, A. Energy 2006, 31, 3208. doi: 10.1016/j.energy.2006.03.034

    2. [2]

      (2) Zhang, Z. G.; Xu, G.W.; Chen, X.; Honda, K.; Yoshida, T. Fuel Process Technol. 2004, 85, 1213. doi: 10.1016/j.fuproc.2003.10.017

    3. [3]

      (3) Purwanto, H.; Akiyama, T. Int. J. Hydrog. Energy 2006, 31, 491. doi: 10.1016/j.ijhydene.2005.04.021

    4. [4]

      (4) Effendi, A.; Hellgardt, K.; Zhang, Z. G.; Yoshida, T. Fuel 2005, 84, 869.

    5. [5]

      (5) ula, G.; Kiousis, V.; Nalbandian, L.; Yentekakis, I.V. Solid State Ionics 2006, 177, 2119.

    6. [6]

      (6) Kolbitsch, P.; Pfeifer, C.; Hofbauer, H. Fuel 2008, 87, 701.

    7. [7]

      (7) Muradov, N.; Smith, F.; T-Raissi, A. Int. J. Hydrog. Energy 2008, 33, 2023. doi: 10.1016/j.ijhydene.2008.02.026

    8. [8]

      (8) Barrai, F.; Jackson, T.; Whitmore, N.; Castaldi, M. J. Catal. Today 2007, 129, 391. doi: 10.1016/j.cattod.2007.07.024

    9. [9]

      (9) Effendi, A.; Zhang, Z. G.; Hellgardt, K.; Hondaa, K.; Yoshida, T. Catal. Today 2002, 77, 181. doi: 10.1016/S0920-5861(02)00244-4

    10. [10]

      (10) Zanganeh, R.; Rezaei, M.; Zamaniyan, A. Int. J. Hydrog. Energy 2013, 38, 3012.

    11. [11]

      (11) Shang, R.; Guo, X.; Mu, S.;Wang, Y.; Jin, G.; Kosslick, H. Int. J. Hydrog. Energy 2011, 36, 4900.

    12. [12]

      (12) Serrano-Lotina, A.; Daza, L. J. Power Sources 2013, 238, 81.

    13. [13]

      (13) Solymosi, F.; Kutsan, G.; Erdöhelyi, A. Catal. Lett. 1991, 11, 149.

    14. [14]

      (14) Múnera, J. F.; Irusta, S.; Cornaglia, L. M.; Lombardo, E. A.; Vargas Cesar, D.; Schmal, M. J. Catal. 2007, 245, 25.

    15. [15]

      (15) Zhang,W. D.; Liu, B. S.; Zhu, C.; Tian, Y. L. Appl. Catal. A 2005, 292, 138.

    16. [16]

      (16) Rostrup-Nielsen, J. R. Studies in Surface Science and Catalysis 1988, 36, 73.

    17. [17]

      (17) Zhang, J.;Wang, H.; Dalai, A. K. Appl. Catal. A 2008, 339, 121.

    18. [18]

      (18) Foo, S. Y.; Cheng, C. K.; Nguyen, T. H.; Kennedy, E. M.; Dlu rski, B. Z.; Adesina, A. A. Catal. Commun. 2012, 26, 183.

    19. [19]

      (19) Hu, Y. H.; Ruckenstein, E. Adv. Catal. 2004, 48, 297.

    20. [20]

      (20) Kado, S.; Urasaki, K.; Sekine, Y.; Fujimoto, K. Chem. Commun. 2001, No. 5, 415.

    21. [21]

      (21) Nagai, M.; Nakahira, K.; Ozawa, Y.; Namiki, Y.; Suzuki, Y. Chem. Eng. Sci. 2007, 62, 4998.

    22. [22]

      (22) Chen, Y. G.; Tomishige, K.; Yokoyama, K.; Fujimoto, K. J. Catal. 1999, 184, 479.

    23. [23]

      (23) Green, M. L. H.; Xiao, T. C. Activation Route for Cobalt Compound Based and Carried Catalysts. CN Patent 1541139A, 2004-01-27. [马尔科姆·莱斯利·候德·格林, 肖天存. 含有钴化合物和载体的催化剂的活化方法: 中国, CN1541139A[P]. 2004-01-27.]

    24. [24]

      (24) Husserl, J. J.; Velen, J. P. V. M. J.; Koser, R. Activation Route of Catalysts for Fischer Tropsch Synthesis. CN Patent 101796166A, 2010-08-04. [胡塞尔·J·J, 扬塞梵维伦·M·J, 科泽·R. 费-托催化剂的活化方法: 中国, CN101796166A[P]. 2010-08-04.]

    25. [25]

      (25) Zhao, J.; Zhou,W.; Xu, J. K.; Ma, J. X. Acta Phys. -Chim. Sin. 2013, 29, 806. [赵健, 周伟, 徐军科, 马建新. 物理化学学报, 2013, 29, 806.]

    26. [26]

      (26) Zhao, J.; Zhou,W.; Xu, J. K.; Ma, J. X. Chin. J. Catal. 2013, 34, 1826. [赵健, 周伟, 徐军科, 周伟, 马建新. 催化学报, 2013, 34, 1826.]

    27. [27]

      (27) Solymosi, F. J. Mol. Catal. 1991, 65, 337.

    28. [28]

      (28) Erdohelyi, A.; Cserenyi, J.; Solymosi, F. J. Catal. 1993, 141, 287.

    29. [29]

      (29) Solymosi, F.; Erdöhelyi, A.; Cserényi, J. Catal. Lett. 1992, 16, 399.

    30. [30]

      (30) Benito, M.; García, S.; Ferreira-Aparicio, P.; García Serrano, L.; Daza, L. J. Power Sources 2007, 169, 177.

    31. [31]

      (31) Xu, J. K.; Li, Z. J.;Wang, J. H.; Zhou,W.; Ma, J. X. Acta Phys. -Chim. Sin. 2009, 25, 253. [徐军科, 李兆静, 汪吉辉, 周伟, 马建新. 物理化学学报, 2009, 25, 253.]

    32. [32]

      (32) Serrano-Lotina, A.; Daza, L. J. Power Sources 2013, 238, 81.

    33. [33]

      (33) Xu, J. K.; Zhou,W.; Li, Z. J.;Wang, J. H.; Ma, J. X. Int. J. Hydrog. Energy 2009, 34, 6646.

    34. [34]

      (34) Patterson, A. L. Phys. Rev. 1939, 56, 978. doi: 10.1103/PhysRev.56.978

    35. [35]

      (35) Chen, D.; Lødeng, R.; Anundskås, A.; Olsvik, O.; Holmen, A. Chem. Eng. Sci. 2001, 56, 1371. doi: 10.1016/S0009-2509(00)00360-2

    36. [36]

      (36) Kim, J. H.; Suh, D. J.; Park, T. J.; Kim, K. L. Appl. Catal. AGen. 2000, 197, 191.

    37. [37]

      (37) Freund, H. J.; Messmer, R. P. Surf. Sci. 1986, 172, 1.

    38. [38]

      (38) Uetsuka, H.;Watanabe, K.; Kunimori, K. Surf. Sci. 1996, 363, 73.

    39. [39]

      (39) Dvelyn, M. P.; Hamza, A. V.; Gdowski, G. E. Surf. Sci. 1986, 167, 451.

    40. [40]

      (40) Chen, Y. G.; Tomishige, K.; Yokoyama, K.; Fujimoto, K. J. Catal. 1998, 184, 479.


  • 加载中
    1. [1]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    2. [2]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    3. [3]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    4. [4]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    5. [5]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    8. [8]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    9. [9]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    10. [10]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    11. [11]

      Yongmei Liu Lisen Sun Yongmei Hao Zhanxiang Liu Shuyong Zhang . Innovative Design of Chemistry Experiment Courses with Ideological and Political Education: A Case Study of Catalytic Hydrogen Production Experiments. University Chemistry, 2025, 40(5): 224-229. doi: 10.12461/PKU.DXHX202412144

    12. [12]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    13. [13]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    14. [14]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    15. [15]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    16. [16]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    17. [17]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    18. [18]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    19. [19]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    20. [20]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

Metrics
  • PDF Downloads(350)
  • Abstract views(498)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return