Citation: ZHAO Wei-Rong, SHI Qiao-Meng, LIU Ying. Performance, Deactivation and Regeneration of SnO2/TiO2 Nanotube Composite Photocatalysts[J]. Acta Physico-Chimica Sinica, ;2014, 30(7): 1318-1324. doi: 10.3866/PKU.WHXB201404222 shu

Performance, Deactivation and Regeneration of SnO2/TiO2 Nanotube Composite Photocatalysts

  • Received Date: 26 January 2014
    Available Online: 22 April 2014

    Fund Project:

  • SnO2/TiO2 nanotube composite photocatalysts were synthesized by microwave-assisted hydrothermal and micro-emulsion methods. The photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy with energy-dispersive X-ray spectroscopy (TEM/EDX), and electrochemical techniques. Toluene was chosen as a model pollutant to evaluate the performance, deactivation, and regeneration behavior of the photocatalysts under ultraviolet (UV) and vacuum ultraviolet (VUV) irradiation. The results show that ternary heterojunctions of SnO2/TiO2 nanotube composite photocatalysts including anatase TiO2 (A-TiO2)/rutile TiO2 (R-TiO2), A-TiO2/SnO2, and R-TiO2/SnO2 were successfully created. They were able to separate photogenerated electron-hole pairs efficiently, and promote photocatalytic activity accordingly. SnO2/TiO2 showed the best photocatalytic performance. Under UV or VUV irradiation, the toluene degradation rate of SnO2/TiO2 was 100%, and the CO2 formation rate (k2) of SnO2/TiO2 was approximately 3 times higher than that of P25. Because of the low mineralization rate under UV irradiation, the refractory intermediates generated can occupy active photocatalytic sites on the photocatalyst surface, which hinders the photocatalytic oxidation rate. After 20 h of UV irradiation, the k2 of SnO2/TiO2 decreased from 138.5 to 76.1 mg·m-3·h-1, implying that the photocatalysts can be deactivated quickly. VUV irradiation was employed to regenerate the deactivated SnO2/SnO2/TiO2 nanotube composite photocatalysts were synthesized by microwave-assisted hydrothermal and micro-emulsion methods. The photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy with energy-dispersive X-ray spectroscopy (TEM/EDX), and electrochemical techniques. Toluene was chosen as a model pollutant to evaluate the performance, deactivation, and regeneration behavior of the photocatalysts under ultraviolet (UV) and vacuum ultraviolet (VUV) irradiation. The results show that ternary heterojunctions of SnO2/TiO2 nanotube composite photocatalysts including anatase TiO2 (A-TiO2)/rutile TiO2 (R-TiO2), A-TiO2/SnO2, and R-TiO2/SnO2 were successfully created. They were able to separate photogenerated electron-hole pairs efficiently, and promote photocatalytic activity accordingly. SnO2/TiO2 showed the best photocatalytic performance. Under UV or VUV irradiation, the toluene degradation rate of SnO2/TiO2 was 100%, and the CO2 formation rate (k2) of SnO2/TiO2 was approximately 3 times higher than that of P25. Because of the low mineralization rate under UV irradiation, the refractory intermediates generated can occupy active photocatalytic sites on the photocatalyst surface, which hinders the photocatalytic oxidation rate. After 20 h of UV irradiation, the k2 of SnO2/TiO2 decreased from 138.5 to 76.1 mg·m-3·h-1, implying that the photocatalysts can be deactivated quickly. VUV irradiation was employed to regenerate the deactivated SnO2/TiO2 because reactive species such as ·OH, O2, O(1D), O(3P), and O3 can be generated. These play an important role in the oxidation of refractory intermediates on the photocatalyst surface, and k2 increased to 143.6 mg·m-3·h-1 accordingly. Therefore, UV photodegradation combined with VUV regeneration could be a feasible photocatalytic process because of a synergistic effect between UV and VUV.

  • 加载中
    1. [1]

      (1) Wang, C. H.; Shao, C. L.; Zhang, X. T.; Liu, Y. C. Inorg. Chem. 2009, 48, 7261. doi: 10.1021/ic9005983

    2. [2]

      (2) Chang, S. Y.; Chen, S. F.; Huang, Y. C. J. Phys. Chem. C 2011, 115, 1600. doi: 10.1021/jp109103a

    3. [3]

      (3) Zhou, X. F.; Cao, J. L.; Xu, M. F.;Wang, Z. S.; Lu, J. Mater. Res. Bull. 2013, 48, 4942. doi: 10.1016/j.materresbull. 2013.07.031

    4. [4]

      (4) Wu, L.; Xing, J.; Hou, Y.; Xiao, F. Y.; Li, Z.; Yang, H. G. Chem. Eur. J. 2013, 19, 8688. doi: 10.1002/chem.201390096

    5. [5]

      (5) Smith,W.;Wolcott, A.; Fitzmorris, R. C.; Zhang, J. Z.; Zhao, Y. P. J. Mater. Chem. 2011, 21, 10792. doi: 10.1039/c1jm11629k

    6. [6]

      (6) Su, C. Y.; Shao, C. L.; Liu, Y. C. J. Colloid Interface Sci. 2010, 346, 324. doi: 10.1016/j.jcis.2010.02.027

    7. [7]

      (7) Wu, Z. Y.; Zhao, G. H.; Zhang, Y. N.; Tian, H. Y.; Li, D. M. J. Phys. Chem. C 2012, 116, 12829. doi: 10.1021/jp300374s

    8. [8]

      (8) Chaguetmi, S.; Mammeri, F.; Nowak, S.; Decorse, P.; Lecoq, H.; Gaceur, M.; Naceur, J. B.; Achour, S.; Chtourou, R.; Ammar, S. RSC Adv. 2013, 3, 2572. doi: 10.1039/c2ra21684a

    9. [9]

      (9) Jovi, F.; Tomaši, V.; Davidson, A.; Nogier, J. P.; Li,W.; Kosar, V. Chem. Biochem. Eng. Q. 2013, 27, 37.

    10. [10]

      (10) Mo, J. H.; Zhang, Y. P.; Xu, Q. J.; Lamson, J. J.; Zhao, R. Y. Atmos. Environ. 2009, 43, 2229. doi: 10.1016/j.atmosenv.2009.01.034

    11. [11]

      (11) Jeong, J. Y.; Sekiguchi, K.; Sakamoto, K. Chemosphere 2004, 57, 663. doi: 10.1016/j.chemosphere.2004.05.037

    12. [12]

      (12) Huang, H. B.; Leung, D. Y. C.; Li, G. S.; Leung, M. K. H.; Fu, X. L. Catal. Today 2011, 175, 310. doi: 10.1016/j.cattod.2011.04.015

    13. [13]

      (13) Zhao,W. R.; Yang, Y. N.; Dai, J. S.; Liu, F. F.;Wang, Y. Chemosphere 2013, 91, 1002. doi: 10.1016/j.chemosphere.2013.01.086

    14. [14]

      (14) Chen, S. H.; Xu, Y.; Lu, B. L.;Wu, D. Acta Phys. -Chim. Sin. 2011, 27, 2933. [陈淑海, 徐耀, 吕宝亮, 吴东. 物理化学学报, 2011, 27, 2933.]

    15. [15]

      (15) Ou, H. H.; Lo, S. L.; Liao, C. H. J. Phys. Chem. C 2011, 115, 4000. doi: 10.1021/jp1076005

    16. [16]

      (16) Zhang, H.; Li, G. R.; An, L. P.; Yan, T. Y.; Gao, X. P.; Zhu, H. Y. J. Phys. Chem. C 2007, 111, 6143. doi:10.1021/jp0702595

    17. [17]

      (17) Zhao,W. R.;Wang, Y.; Yang, Y. N.; Tang, J.; Yang, Y. Appl. Catal. B: Environ. 2012, 115, 90.

    18. [18]

      (18) Dong, L. F.; Gari, R. R. S.; Li, Z.; Craig, M. M.; Hou, S. F. Carbon 2010, 48, 781. doi: 10.1016/j.carbon.2009.10.027

    19. [19]

      (19) Tang, Z. R.; Li, F.; Zhang, Y. H.; Fu, X. Z.; Xu, Y. J. J. Phys. Chem. C 2011, 115, 7880. doi: 10.1021/jp1115838

    20. [20]

      (20) Debono, O.; Thevenet, F.; Gravejat, P.; Hequet, V.; Raillard, C.; Lecoq, L. Appl. Catal. B: Environ. 2011, 106, 600. doi: 10.1016/j.apcatb.2011.06.021

    21. [21]

      (21) Jankulovska, M.; Berger, T.; Lana-Villarreal, T.; Gómez, R. Electrochim. Acta 2012, 62, 172. doi: 10.1016/j.electacta.2011.12.016

    22. [22]

      (22) Komaguchi, K.; Nakano, H.; Araki, A.; Harima, Y. Chem. Phys. Lett. 2006, 428, 338. doi: 10.1016/j.cplett.2006.07.003

    23. [23]

      (23) Xing, M. Y.; Zhang, J. L.; Chen, F.; Tian, B. Z. Chem. Commun. 2011, 47, 4947. doi: 10.1039/c1cc10537j

    24. [24]

      (24) Zhao, L.; Ran, J. R.; Shu, Z.; Dai, G. T.; Zhai, P. C.;Wang, S. M. Int. J. Photoenergy 2012, 2012, 1. doi: 10.1155/2012/472958

    25. [25]

      (25) Huang, H. B.; Li,W. B. Appl. Catal. B: Environ. 2011, 102, 449. doi: 10.1016/j.apcatb.2010.12.025

    26. [26]

      (26) Zhao,W. R.; Dai, J. S.; Liu, F. F.; Bao, J. Z.;Wang, Y.; Yang, Y.; Yang, Y. N.; Zhao, D. Y. Sci. Total Environ. 2012, 438, 201. doi: 10.1016/j.scitotenv.2012.08.081


  • 加载中
    1. [1]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    2. [2]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    3. [3]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    4. [4]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    5. [5]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    6. [6]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

    7. [7]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    8. [8]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    10. [10]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    11. [11]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    12. [12]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    13. [13]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    14. [14]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    15. [15]

      Zhangyong LIULihui XUYue YANGLiming WANGHong PANXinzhe HUANGXueqiang FUYingxiu ZHANGMeiran DOUMeng WANGYi TENG . Preparation and photocatalytic performance of CsxWO3/TiO2 based on full spectral response. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1445-1464. doi: 10.11862/CJIC.20240345

    16. [16]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    17. [17]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    19. [19]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    20. [20]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

Metrics
  • PDF Downloads(743)
  • Abstract views(703)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return