Citation:
BAI Shou-Li, LU Wen-Hu, LI Dian-Qing, LI Xiao-Ning, FANG Yan-Yan, LIN Yuan. Synthesis of Mesoporous TiO2 Microspheres and Their Use as Scattering Layers in Quantum Dot Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica,
;2014, 30(6): 1107-1112.
doi:
10.3866/PKU.WHXB201404111
-
Mesoporous TiO2 microspheres (MSs) were successfully synthesized by the direct hydrolysis of TiCl4 in ethanol aqueous solution using cetyltrimethyl ammonium bromide (CTAB) as a template. X-ray diffraction (XRD) revealed a rutile structure for TiO2 in all the products. Scanning electron microscopy (SEM) revealed that the TiO2 microspheres had an average diameter of 700 nm, and they were composed of packed nanoparticles that had a mean size of about 16 nm. Films with or without TiO2 microspheres, as a scattering layer on top of the TiO2 nanocrystalline layer, were prepared by the doctor-blade method. CdS/ CdSe quantum dots (QDs) were grown on films by chemical bath deposition (CBD) to form QD sensitized solar cells (QDSCs). Ultraviolet-visible and diffuse reflectance spectra showed that these micro-spherical structures were favorable for the deposition of QDs and a relatively higher light scattering effect was observed. This effectively enhanced light harvesting and led to an increase in the photocurrent of the QDSCs. As a result, a power conversion efficiency of 4.5% was obtained, which is 27.7% higher than that of QDSCs without scattering layers and 10.2% higher than that of QDSCs with traditional scattering layers composed of 20 and 400 nm TiO2 solid particles. We attribute this improvement to their higher light scattering effect and longer electron lifetimes.
-
-
-
[1]
(1) Yu,W.W.; Qu, L. H.; Gao,W. Z.; Peng, X. G. Chem. Mater. 2010, 26, 560.
-
[2]
(2) Kamat, P. V. J. Phys. Chem. C 2008, 112, 18737. doi: 10.1021/jp806791s
-
[3]
(3) Nozik, A. J. Inorg. Chem. 2005, 44, 6893. doi: 10.1021/ic0508425
-
[4]
(4) Semonin, O. E.; Luther, J. M.; Choi, S.; Chen, H. Y.; Gao, J. B.; Nozik, A. J.; Beard, M. C. Science 2011, 334, 1530. doi: 10.1126/science.1209845
-
[5]
(5) Hanna, M. C.; Nozik, A. J. J. Appl. Phys. 2006, 100, 074510. doi: 10.1063/1.2356795
-
[6]
(6) Shockley,W.; Queisser, H. J. J. Appl. Phys. 1961, 32, 510. doi: 10.1063/1.1736034
-
[7]
(7) Yella, A.; Lee, H.W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E.W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 629. doi: 10.1126/science.1209688
-
[8]
(8) Zhang, Q. X.; Guo, X. Z.; Huang, X. M.; Li, D. M.; Luo, Y. H.; Shen, Q.; Toyoda, T.; Meng, Q. B. Phys. Chem. Chem. Phys. 2011, 13, 4659. doi: 10.1039/c0cp02099k
-
[9]
(9) Zhang, Q. B.; Feng, Z. F.; Han, N. N.; Lin, L. L.; Zhou, J. Z.; Lin, Z. H. Acta Phys. -Chim. Sin. 2010, 26, 2927. [张桥保, 冯增芳, 韩楠楠, 林玲玲, 周剑章, 林仲华. 物理化学学报, 2010, 26, 2927.] doi: 10.3866/PKU.WHXB20101113
-
[10]
(10) Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2008, 130, 4007. doi: 10.1021/ja0782706
-
[11]
(11) Guijarro, N.; Lana-Villarreal, T.; Lutz, T.; Haque, S. A.; Gómez, R. J. Phys. Chem. Lett. 2012, 3, 3367.
-
[12]
(12) Jovanovski, V.; nzález-Pedro, V.; Gimenez, S.; Azaceta, E.; Cabanero, G.; Grande, H.; Tena-Zaera, R.; Mora-Sero, I.; Bisquert, J. J. Am. Chem. Soc. 2011, 133, 20156. doi: 10.1021/ja2096865
-
[13]
(13) Shengyuan, Y.; Nair, A. S.; Peining, Z.; Ramakrishna, S. Mater. Lett. 2012, 76,43. doi: 10.1016/j.matlet.2012.02.055
-
[14]
(14) Shi, J. F.; Fan, Y.; Xu, X. Q.; Xu, G.; Chen, L. H. Acta Phys. -Chim. Sin. 2012, 28, 857. [史继富, 樊晔, 徐雪青, 徐刚, 陈丽华. 物理化学学报, 2012, 28, 857.] doi: 10.3866/PKU.WHXB201202204
-
[15]
(15) Paul, G. S.; Kim, J. H.; Kim, M. S.; Do, K.; Ko, J.; Yu, J. S. ACS Appl. Mater. Interfaces 2012, 4, 375. doi: 10.1021/am201452s
-
[16]
(16) Barbe, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V.; Grätzel, M. J. Am. Chem. Soc. 1997, 80, 3157.
-
[17]
(17) Chou, T. P.; Zhang, Q. F.; Fryxell, G. E.; Cao, G. Z. Adv. Mater. 2007, 19, 2588. doi: 10.1002/adma.200602927
-
[18]
(18) Xu, X. Q.; Jiang, G. H.;Wan, Q. C.; Shi, J. F.; Xu, G.; Miao, L. Mater. Chem. Phys. 2012, 136, 1060. doi: 10.1016/j.matchemphys.2012.08.051
-
[19]
(19) Park, Y. C.; Chang, Y. J.; Kum, B. G.; Kong, E. H.; Son, J. Y.; Kown, Y. S.; Park, T.; Jang, H. M. J. Mater. Chem. 2011, 21, 9582. doi: 10.1039/c1jm11043h
-
[20]
(20) Duan, Y. D.; Fu, N. Q.; Fang, Y. Y.; Li, X. N.; Liu, Q. P.; Zhou, X.W.; Lin, Y. Electrochim. Acta 2013, 113, 109. doi: 10.1016/j.electacta.2013.09.057
-
[21]
(21) Duan, Y. D.; Fu, N. Q.; Liu, Q. P.; Fang, Y. Y.; Zhou, X.W.; Zhang, J. B.; Lin, Y. J. Phys. Chem. C 2012, 116, 8888. doi: 10.1021/jp212517k
-
[22]
(22) Zhang, Q. X.; Chen, G. P.; Yang, Y. Y.; Shen, X.; Zhang, Y. D.; Li, C. H.; Yu, R. C.; Luo, Y. H.; Li, D. M.; Meng, Q. B. Phys. Chem. Chem. Phys. 2012, 14, 6479. doi: 10.1039/c2cp40568g
-
[23]
(23) Tachan, Z.; Shalom, M.; Hod, I.; Rühle, S.; Tirosh, S.; Zaban, A. J. Phys. Chem. C 2011, 115, 6162. doi: 10.1021/jp112010m
-
[24]
(24) Cullity, B. D. Elements of X-ray Diffraction, 2nd ed.; Addison- Wesley Publishing Company: New York, 1978; pp 281-285.
-
[25]
(25) Zhang, X. T.; Zhou, G.W.; Xu, J.; Bai, G.W.;Wang, L. J. Solid State Chem. 2010, 183, 1394. doi: 10.1016/j.jssc.2010.04.016
-
[26]
(26) Feng, L.; Jia, J. G.; Fang, Y. Y.; Zhou, X.W.; Lin, Y. Electrochim. Acta 2013, 87, 629. doi: 10.1016/j.electacta.2012.09.037
-
[27]
(27) Fabregat-Santia , F.; Bisquert, J.; Palomares, E.; Otero, L.; Kuang, D. B.; Zakeeruddin, S. M.; Grätzel, M. J. Phys. Chem. C 2007, 111, 6550. doi: 10.1021/jp066178a
-
[28]
(28) Bisquert, J.; Fabregat-Santia , F.; Mora-Seró, I.; Garcia-Belmonte, G.; Gimenez, D. J. Phys. Chem. C 2009, 113, 17278. doi: 10.1021/jp9037649
-
[1]
-
-
-
[1]
Wenlong Wang , Wentao Hao , Lang He , Jia Qiao , Ning Li , Chaoqiu Chen , Yong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116
-
[2]
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
-
[3]
Tong WANG , Qinyue ZHONG , Qiong HUANG , Weimin GUO , Xinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011
-
[4]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[5]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[6]
Miaomiao He , Zhiqing Ge , Qiang Zhou , Jiaqing He , Hong Gong , Lingling Li , Pingping Zhu , Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040
-
[7]
Huirong BAO , Jun YANG , Xiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008
-
[8]
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
-
[9]
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
-
[10]
Zehao Zhang , Zheng Wang , Haibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020
-
[11]
Yingying Chen , Di Xu , Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057
-
[12]
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
-
[13]
Yu SU , Xinlian FAN , Yao YIN , Lin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126
-
[14]
Lingqi Zhang , Hairong Huang , Jialin Li , Li Ji , Yufan Pan , Meiling Ye , Cuixue Chen , Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138
-
[15]
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
-
[16]
.
南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积
. CCS Chemistry, 2025, 7(0): -. -
[17]
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
-
[18]
Xueli Mu , Lingli Han , Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057
-
[19]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[20]
Ruiqin Feng , Ye Fan , Yun Fang , Yongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020
-
[1]
Metrics
- PDF Downloads(588)
- Abstract views(684)
- HTML views(7)