Citation:
FU Ping-Feng, ZHANG Peng-Yi. Low-Temperature Electrostatic Self-Assembly of Noble Metals on TiO2 Nanostructured Films with Enhanced Photocatalytic Activity[J]. Acta Physico-Chimica Sinica,
;2014, 30(5): 965-972.
doi:
10.3866/PKU.WHXB201403171
-
Photoactive TiO2 nanostructured films (i.e., nanoflowers and nanowires) have been directly synthesized on Ti sheets using an alkali-hydrothermal route. Ultrafine noble metals (i.e., Au, Pt, Pd) nanoparticles (NPs) were homogenously dispersed onto the TiO2 nanostructures using a facile low temperature electrostatic self-assembly approach. The resulting noble-metal/TiO2-nanostructured films supported on Ti sheets had an all-in-one structure with all of the virtues of a porous framework and enhanced photocatalytic activity. Ultra highresolution field-emission scanning electron microscopy (FESEM) revealed that the noble metal NPs were uniformly dispersed on the TiO2 surface with od physical separation properties. The average sizes of the loaded Au, Pt, and Pd NPs were approximately 4.0, 2.0, and 10.0 nm, respectively. Noble metal NPs were deposited not only on the film surface but also in the interior framework of the TiO2 films with a depth of more than 580 nm, as revealed by Auger electron spectroscopic (AES) in-depth profiling analysis. X-ray photoelectron spectroscopy (XPS) analysis revealed that the Pt and Pd NPs had been partially oxidized to PtOabs and immobicompletely oxidized to PdO, respectively, whereas the Au NPs remained in a metallic state after being annealed in air at 300 ℃. During the electrostatic self-assembly process, the loading of the noble metal can be adjusted by controlling the assembly time and the colloidal pH value. The degradation of aqueous methyl orange showed that the Au/TiO2 (or Pt/TiO2)-nanostructured films possessed remarkably enhanced photocatalytic activity compared with pure TiO2 films, and revealed that the metal NPs played a positive role in separating photogenerated hole-electron pairs. However, the deposited PdO species had no discernible impact on the activity of the TiO2 nanostructures.
-
-
-
[1]
(1) He, X. L.; Cai, Y. Y.; Zhang, H. M.; Liang, C. H. J. Mater. Chem. 2011, 21, 475. doi: 10.1039/c0jm02404j
-
[2]
(2) Wang, J.; Lin, Z. Q. Chem. Mater. 2010, 22, 579. doi: 10.1021/cm903164k
-
[3]
(3) Lu, Y.; Chen, S.; Quan, X.; Yu, H. T. Chin. J. Catal. 2011, 32, 1838. [路莹, 陈硕, 全燮, 于洪涛. 催化学报, 2011, 32, 1838.] doi: 10.1016/S1872-2067(10)60288-4
-
[4]
(4) Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K., Grimes, C. A. Nano Lett. 2005, 5, 191. doi: 10.1021/nl048301k
-
[5]
(5) Wu, Q.; Su, Y. F.; Sun, L.; Wang, M. Y.; Wang, Y. Y.; Lin, C. J. Acta Phys. -Chim. Sin. 2012, 28, 635. [吴奇, 苏钰丰, 孙岚, 王梦晔, 王莹莹, 林昌健. 物理化学学报, 2012, 28, 635.] doi: 10.3866/PKU.WHXB201112231
-
[6]
(6) Peng, X. S.; Chen, A. C. Adv. Funct. Mater. 2006, 16, 1355.
-
[7]
(7) Jennings, J. R.; Ghicov, A.; Peter, L. M.; Schmuki, P.; Walker, A. B. J. Am. Chem. Soc. 2008, 130, 13364. doi: 10.1021/ja804852z
-
[8]
(8) Tachikawa, T.; Majima, T. J. Am. Chem. Soc. 2009, 131, 8485. doi: 10.1021/ja900194m
-
[9]
(9) Astruc, D.; Lu, F.; Aranzaes, J. R. Angew. Chem. Int. Edit. 2005, 44, 7852.
-
[10]
(10) Fu, P. F.; Zhang, P. Y. Thin Solid Films 2011, 519, 3480. doi: 10.1016/j.tsf.2010.12.245
-
[11]
(11) Chen, S. H.; Xu, Y.; Lü, B. L.; Wu, D. Acta Phys. -Chim. Sin. 2011, 27, 2933. [陈淑海, 徐耀, 吕宝亮, 吴东. 物理化学学报, 2011, 27, 2933.] doi: 10.3866/PKU.WHXB20112933
-
[12]
(12) Wang, X. D.; Caruso, R. A. J. Mater. Chem. 2011, 21, 20. doi: 10.1039/c0jm02620d
-
[13]
(13) Lee, J. H.; Choi, H. S.; Lee, J. H.; Kim, Y. J.; Suh, S. J.; Chi, C. S.; Oh, H. J. J. Cryst. Growth 2009, 311, 638. doi: 10.1016/j.jcrysgro.2008.09.065
-
[14]
(14) Yang, K. H.; Chang, C. M. Mater. Res. Bull. 2013, 48, 372. doi: 10.1016/j.materresbull.2012.10.040
-
[15]
(15) Chan, S. C.; Barteau, M. A. Langmuir 2005, 21, 5588. doi: 10.1021/la046887k
-
[16]
(16) Xiao, F. X. J. Phys. Chem. C 2012, 116, 16487. doi: 10.1021/jp3034984
-
[17]
(17) Xiao, F. X. RSC Adv. 2012, 2, 12699. doi: 10.1039/c2ra22621a
-
[18]
(18) Fu, P. F.; Zhang, P. Y. Appl. Catal. B; Environ. 2010, 96, 176. doi: 10.1016/j.apcatb.2010.02.017
-
[19]
(19) Li, J.; Zeng, H. C. Chem. Mater. 2006, 18, 4270. doi: 10.1021/cm060362r
-
[20]
(20) Jin, Y. D.; Kang, X. F.; Song, Y. H.; Zhang, B. L.; Cheng, G. J.; Dong, S. J. Anal. Chem. 2001, 73, 2843. doi: 10.1021/ac001207d
-
[21]
(21) Tsunoyama, H.; Sakurai, H.; Tsukuda, T. Chem. Phys. Lett. 2006, 429, 528. doi: 10.1016/j.cplett.2006.08.066
-
[22]
(22) Tsunoyama, H.; Sakurai, H.; Ichikuni, N.; Negishi, Y.; Tsukuda, T. Langmuir 2004, 20, 11293. doi: 10.1021/la0478189
-
[23]
(23) Ye, Q.; Hu, H. Y.; Yu, B.; Wang, X. L.; Li, S. B.; Zhou, F. Phys. Chem. Chem. Phys. 2010, 12, 5480. doi: 10.1039/b925002f
-
[24]
(24) Bowker, M.; James, D.; Stone, P.; Bennett, R.; Perkins, N.; Millard, L.; Greaves, J.; Dickinson, A. J. Catal. 2003, 217, 427.
-
[25]
(25) Bian, Z. F.; Zhu, J.; Cao, F. L.; Lu, Y. F.; Li, H. X. Chem. Commun. 2009, 25, 3789.
-
[26]
(26) Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Science 2003, 301, 935. doi: 10.1126/science.1085721
-
[27]
(27) Zangmeister, C. D.; Picraux, L. B.; Van Zee, R. D.; Yao, Y. X.; Tour, J. M. Chem. Phys. Lett. 2007, 442, 390. doi: 10.1016/j.cplett.2007.06.012
-
[28]
(28) Ioannides, T.; Verykios, X. E. J. Catal. 1996, 161, 560. doi: 10.1006/jcat.1996.0218
-
[29]
(29) Yan, H. J.; Yang, J. H.; Ma, G. J.; Wu, G. P.; Zong, X.; Lei, Z. B.; Shi, J. Y.; Li, C. J. Catal. 2009, 266, 165. doi: 10.1016/j.jcat.2009.06.024
-
[30]
(30) Bera, P.; Priolkar, K. R.; Gayen, A.; Sarode, P. R.; Hegde, M. S.; Emura, S.; Kumashiro, R.; Jayaram, V.; Subbanna, G. N. Chem. Mater. 2003, 15, 2049. doi: 10.1021/cm0204775
-
[31]
(31) Titkov, A. I.; Salanov, A. N.; Koscheev, S. V.; Boronin, A. I. Surf. Sci. 2006, 600, 4119. doi: 10.1016/j.susc.2006.01.131
-
[32]
(32) Zhong, Z.; Lin, J. Y.; Teh, S. P.; Teo, J.; Dautzenberg, F. M. Adv. Funct. Mater. 2007, 17, 1402.
-
[33]
(33) Wang, D. A.; Liu, Y.; Wang, C.W.; Zhou, F.; Liu, W. M. ACS Nano 2009, 3, 1249. doi: 10.1021/nn900154z
-
[34]
(34) Li, H. X.; Bian, Z. F.; Zhu, J.; Huo, Y. N.; Li, H.; Lu, Y. F. J. Am. Chem. Soc. 2007, 129, 4538. doi: 10.1021/ja069113u
-
[35]
(35) Yin, S.; Hasegawa, H.; Maeda, D.; Ishitsuka, M.; Sato, T. J. Photochem. Photobiol. A: Chem. 2004, 163, 1. doi: 10.1016/S1010-6030(03)00289-2
-
[36]
(36) You, X. F.; Chen, F.; Zhang, J. L.; Anpo, M. Catal. Lett. 2005, 102, 247. doi: 10.1007/s10562-005-5863-5
-
[37]
(37) Wu, Z. B.; Sheng, Z. Y.; Wang, H. Q.; Liu, Y. Chemosphere 2009, 77, 264. doi: 10.1016/j.chemosphere.2009.07.060
-
[38]
(38) Sheng, Z. Y.; Wu, Z. B.; Liu, Y.; Wang, H. Q. Catal. Commun. 2008, 9, 1941. doi: 10.1016/j.catcom.2008.03.022
-
[39]
(39) Fu, P. F.; Zhang, P. Y.; Li, J. Appl. Catal. B: Environ. 2011, 105, 220. doi: 10.1016/j.apcatb.2011.04.021
-
[1]
-
-
-
[1]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[2]
Zhangyong LIU , Lihui XU , Yue YANG , Liming WANG , Hong PAN , Xinzhe HUANG , Xueqiang FU , Yingxiu ZHANG , Meiran DOU , Meng WANG , Yi TENG . Preparation and photocatalytic performance of CsxWO3/TiO2 based on full spectral response. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1445-1464. doi: 10.11862/CJIC.20240345
-
[3]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[4]
Xueqi Yang , Juntao Zhao , Jiawei Ye , Desen Zhou , Tingmin Di , Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074
-
[5]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[6]
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071
-
[7]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[8]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[9]
Lutian Zhao , Yangge Guo , Liuxuan Luo , Xiaohui Yan , Shuiyun Shen , Junliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029
-
[10]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[11]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[12]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[13]
Gaopeng Liu , Lina Li , Bin Wang , Ningjie Shan , Jintao Dong , Mengxia Ji , Wenshuai Zhu , Paul K. Chu , Jiexiang Xia , Huaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041
-
[14]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[15]
Haoyu Sun , Dun Li , Yuanyuan Min , Yingying Wang , Yanyun Ma , Yiqun Zheng , Hongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007
-
[16]
Huiwei Ding , Bo Peng , Zhihao Wang , Qiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048
-
[17]
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
-
[18]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067
-
[19]
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
-
[20]
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ−壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081
-
[1]
Metrics
- PDF Downloads(629)
- Abstract views(663)
- HTML views(5)