Citation: LIU Jian-Xin, WANG Yun-Fang, WANG Ya-Wen, FAN Cai-Mei. Synthesis, Regeneration and Photocatalytic Activity under Visible-Light Irradiation of Ag/Ag3PO4/g-C3N4 Hybrid Photocatalysts[J]. Acta Physico-Chimica Sinica, ;2014, 30(4): 729-737. doi: 10.3866/PKU.WHXB201402243 shu

Synthesis, Regeneration and Photocatalytic Activity under Visible-Light Irradiation of Ag/Ag3PO4/g-C3N4 Hybrid Photocatalysts

  • Received Date: 9 December 2013
    Available Online: 24 February 2014

    Fund Project:

  • Ag/Ag3PO4/g-C3N4 (g denotes graphitic) was synthesized via an anion-exchange precipitation method, and its photocatalytic activity under visible light and regeneration with H2O2 and NaNH4HPO4 were investigated. The structural characteristics were analyzed using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), ultraviolet-visible (UV-Vis) absorption spectroscopy, and X-ray photoelectron spectroscopy (XPS). The XRD results showed that the structure of the regenerated catalyst was unchanged. The FESEM and UV-Vis absorption spectroscopy results showed that the Ag/Ag3PO4/g-C3N4 catalyst was composed of Ag3PO4 and g-C3N4. XPS showed that a small amount of Ag particles were present on the catalyst surface. The photocatalytic activity was evaluated using phenol degradation under visible light (λ>420 nm) and the photocatalytic mechanism was discussed based on the active species during the photocatalytic process and the band structure. Experimental studies showed that the photocatalytic activity of the as-prepared Ag/Ag3PO4/g-C3N4 was higher than those of pure Ag3PO4 and g-C3N4. The high photocatalytic performance of the Ag/Ag3PO4/g-C3N4 composite can be attributed to the synergistic effect of Ag3PO4, g-C3N4, and a small amount of Ag0. Regeneration using H2O2 and NaNH4HPO4? 4H2O fully restored the photoactivity of the catalyst, showing that this green regeneration method could make Ag/Ag3PO4/g-C3N4 an environmentally friendly catalyst for practical applications.

  • 加载中
    1. [1]

      (1) Fujishima, A.; Honda, K. Nature 1972, 238 (5358), 37. doi: 10.1038/238037a0

    2. [2]

      (2) Hagfeldt, A.; Grätzel, M. Chem. Rev. 1995, 95 (1), 49. doi: 10.1021/cr00033a003

    3. [3]

      (3) Chen,W.; Dong, X. F.; Chen, Z. S.; Chen, S. Z.; Lin,W. M. Acta Phys. -Chim. Sin. 2009, 25 (6), 1107. [陈威, 董新法, 陈之善, 陈胜洲, 林维明. 物理化学学报, 2009, 25 (6), 1107.]d oi: 10.3866/PKU.WHXB20090624

    4. [4]

      (4) Khaselev, O.; Turner, J. A. Science 1998, 280 (5362), 425. doi: 10.1126/science.280.5362.425

    5. [5]

      (5) Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Nature 2001, 414 (6864), 625. doi: 10.1038/414625a

    6. [6]

      (6) Yang, Y. Q.; Zhang, G. K.; Yu, S. J.; Shen, X. Chem. Eng. J. 2010, 162 (1), 171. doi: 10.1016/j.cej.2010.05.024

    7. [7]

      (7) Hu, Y. F.; Li, Y. X.; Peng, S. Q.; Lü, G. X.; Li, S. B. Acta Phys.-Chim. Sin. 2008, 24 (11), 2071. [胡元方, 李越湘, 彭绍琴, 吕功煊, 李树本. 物理化学学报, 2008, 24 (11), 2071.] doi: 10.3866/PKU.WHXB20081123

    8. [8]

      (8) Fan, H. B.; Zhang, D. F.; Guo, L. Acta Phys. -Chim. Sin. 2012, 28 (9), 2214. [范海滨, 张东凤, 郭林. 物理化学学报, 2012, 28 (9), 2214.] doi: 10.3866/PKU.WHXB201206122

    9. [9]

      (9) Zhang, N.; Zhang, Y. H.; Xu, Y. J. Nanoscale 2012, 4, 5792. doi: 10.1039/c2nr31480k

    10. [10]

      (10) Zhang, N.; Liu, S. Q.; Xu, Y. J. Nanoscale 2012, 4, 2227. doi: 10.1039/c2nr00009a

    11. [11]

      (11) Yang, M. Q.; Xu, Y. J. Phys. Chem. Chem. Phys. 2013, 15, 19102. doi: 10.1039/c3cp53325e

    12. [12]

      (12) Yang, M. Q.;Weng, B.; Xu, Y. J. J. Mater. Chem. A 2014, 2, 1710. doi: 10.1039/c3ta14370h

    13. [13]

      (13) Yi, Z. G.; Ye, J. H.; Kikugawa, N.; Kako, T.; Ouyang, S. X.; Stuart-Williams, H.; Yang, H.; Cao, J. Y.; Luo,W. J.; Li, Z. S.; Liu, Y.;Withers, R. L. Nat. Mater. 2010, 9 (7), 559. doi:1 0.1038/nmat2780

    14. [14]

      (14) Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8 (1), 76. doi: 10.1038/nmat2317

    15. [15]

      (15) Asahi, R.; Morikiwa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269. doi: 10.1126/science.1061051

    16. [16]

      (16) Kudo, A.; Omori, K.; Kato, H. J. Am. Chem. Soc. 1999, 121 (49), 11459. doi: 10.1021/ja992541y

    17. [17]

      (17) Wang, Y. F.; Li, X. L.;Wang, Y.W.; Fan, C. M. J. Solid State Chem. 2013, 202, 51. doi: 10.1016/j.jssc.2013.03.013

    18. [18]

      (18) Bi, Y. P.; Ouyang, S. X.; Cao, J. Y.; Ye, J. H. Phys. Chem. Chem. Phys. 2011, 13, 10071. doi: 10.1039/c1cp20488b

    19. [19]

      (19) Yao,W. F.; Zhang, B.; Huang, C. P.; Ma, C.; Song, X. L.; Xu, Q. J. J. Mater. Chem. 2012, 22, 4050. doi: 10.1039/c2jm14410g

    20. [20]

      (20) Shen, K.; ndal, M. A.; Siddique, R. G.; Shi, S.;Wang, S. Q.; Sun, J. B.; Xu, Q. Y. Chin. J. Catal. 2014, 35 (1), 78. doi: 10.1016/S1872-2067(12)60712-8

    21. [21]

      (21) Zhang, L. L.; Zhang, H. C.; Huang, H.; Yang, L.; Kang, Z. H. New J. Chem. 2012, 36 (8), 1541. doi: 10.1039/c2nj40206h

    22. [22]

      (22) Wang, H.; Bai, Y. S.; Yang, J. T.; Lang, X. F.; Li, J. H.; Guo, L. Chem. Eur. J. 2012, 18 (18), 5524. doi: 10.1002/chem.v18.18

    23. [23]

      (23) ettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Angew. Chem. Int. Edit. 2006, 45 (27), 4467.

    24. [24]

      (24) Shahbaz, M.; Urano, S.; LeBreton, P. R.; Rossman, M. A.; Hosmane, R. S.; Leonard, N. J. J. Am. Chem. Soc. 1984, 106 (10), 2805. doi: 10.1021/ja00322a014

    25. [25]

      (25) Chhor, K.; Bocquet, J. F.; Colbeau-Justin, C. Mater. Chem. Phys. 2004, 86 (1), 123. doi: 10.1016/j.matchemphys.2004.02.023

    26. [26]

      (26) Hu, C.; Lan, Y. Q.; Qu, J. H.; Hu, X. X.;Wang, A. M. J. Phys. Chem. B 2006, 110 (9), 4066. doi: 10.1021/jp0564400

    27. [27]

      (27) Lopez-Salido, I.; Lim, D. C.; Kim, Y. D. Surf. Sci. 2005, 588 (1-3), 6.

    28. [28]

      (28) Ng, H. N.; Calvo, C.; Faggiani, R. Acta Cryst. B 1978, 34 (3), 898. doi: 10.1107/S0567740878014570

    29. [29]

      (29) Cao, J.; Luo, B. D.; Lin, H. L.; Xu, B. Y.; Chen, S. F. J. Hazard. Mater. 2012, 217 -218, 107.

    30. [30]

      (30) Khan, A.; Qamar, M.; Muneer, M. Chem. Phys. Lett. 2012, 519 -520, 54.

    31. [31]

      (31) Zhang, F. J.; Xie, F. Z.; Zhu, S. F.; Liu, J.; Zhang, J.; Mei, S. F.; Zhao,W. Chem. Eng. J. 2013, 228, 435. doi: 10.1016/j.cej.2013.05.027

    32. [32]

      (32) Liu, J. J.; Fu, X. L.; Chen, S. F.; Zhu, Y. F. Appl. Phys. Lett. 2011, 99 (19), 191903/1. doi: 10.1063/1.3660319

    33. [33]

      (33) Chen, L. C.; Chen, C. K.;Wei, S. L.; Bhusari, D. M.; Chen, K. H.; Chen, Y. F.; Jong, Y. C.; Huang, Y. S. Appl. Phys. Lett. 1998, 72 (19), 2463. doi: 10.1063/1.121383

    34. [34]

      (34) Zhang, Q. H.; Gao, L.; Guo, J. K. Appl. Catal. B 2000, 26 (3), 207. doi: 10.1016/S0926-3373(00)00122-3

    35. [35]

      (35) Liu, Y. P.; Fang, L.; Lu, H. D.; Liu, L. J.;Wang, H.; Hu, C. Z. Catal. Commun. 2012, 17, 200. doi: 10.1016/j.catcom.2011.11.001

    36. [36]

      (36) Bi, Y. P.; Ouyang, S. X.; Umezawa, N.; Cao, J. Y.; Ye, J. H. J. Am. Chem. Soc. 2011, 133 (17), 6490. doi: 10.1021/ja2002132

    37. [37]

      (37) Zhang, N.; Liu, S. Q.; Fu, X. Z.; Xu, Y. Z. J. Phys. Chem. C 2011, 115 (18), 9136. doi: 10.1021/jp2009989

    38. [38]

      (38) Li, G. T.;Wong, K. H.; Zhang, X.W.; Hu, C.; Yu, J. C.; Chan, R. C. Y.;Wong, P. K. Chemosphere 2009, 76 (9), 1185. doi: 10.1016/j.chemosphere.2009.06.027

    39. [39]

      (39) Li, Y. Y.;Wang, J. S.; Yao, H. C.; Dang, L. Y.; Li, Z. J. J. Mol. Catal. A: Chem. 2011, 334 (1-2), 116.

    40. [40]

      (40) Kumar, S.; Surendar, T.; Baruahb, A.; Shanker, V. J. Mater. Chem. A 2013, 1, 5333. doi: 10.1039/c3ta00186e

    41. [41]

      (41) Oliveira, H. G.; Nery, D. C.; Lon , C. Appl. Catal. B 2010, 93 (3-4), 205.

    42. [42]

      (42) Sobczy ski, A.; Duczmal, .; Zmudzi ski,W. J. Mol. Catal. AChem. 2004, 213 (2), 225. doi: 10.1016/j.molcata.2003.12.006

    43. [43]

      (43) Peiró, A. M.; Ayllón, J. A.; Peral, J.; Doménech, X. Appl. Catal. B 2001, 30 (3-4), 359.

    44. [44]

      (44) ettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Angew. Chem. Int. Edit. 2006, 45 (27) 4467.

    45. [45]

      (45) Liu, Y. F.; Zhu, Y. Y.; Xu, J.; Bai, X. J.; Zong, R. L.; Zhu, Y. F. Appl. Catal. B 2013, 142 -143, 561.

    46. [46]

      (46) Ma,W.; Cheng, Z. H.; Gao, Z. X.;Wang, R.;Wang, B. D.; Sun, Q. Chem. Eng. J. 2014, 241, 167. doi: 10.1016/j.cej.2013.12.031

    47. [47]

      (47) Lin, H. L.; Cao, J.; Luo, B. D.; Xu, B. Y.; Chen, S. F. Catal. Commun. 2012, 21, 91. doi: 10.1016/j.catcom.2012.02.008


  • 加载中
    1. [1]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    2. [2]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    6. [6]

      Min WANGDehua XINWei ZHANGHaiying YANGYuchun WANGZhaorong LIUMeng SHILe SHI . Preparation and full-spectrum catalytic degradation performance of nitrogen vacancy g-C3N4/Bi/BiOBr/BiOI heterojunction material. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2283-2298. doi: 10.11862/CJIC.20250109

    7. [7]

      Jiayao WangGuixu PanNing WangShihan WangYaolin ZhuYunfeng Li . Preparation of donor-π-acceptor type graphitic carbon nitride photocatalytic systems via molecular level regulation for high-efficient H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(12): 100168-0. doi: 10.1016/j.actphy.2025.100168

    8. [8]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    9. [9]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    10. [10]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    11. [11]

      Tianjun NiHui ZhangLiping ZhouRoujie MaYanyu WangZhijun YangDan LuoNithima KhaorapapongXingtao XuYusuke YamauchiDong Liu . Atomic cobalt catalysts on 3D interconnected g-C3N4 support for activation of peroxymonosulfate: The importance of Co-N coordination effect. Chinese Chemical Letters, 2025, 36(9): 110659-. doi: 10.1016/j.cclet.2024.110659

    12. [12]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    13. [13]

      Zheng LiuYuqing BianGraham DawsonJiawei ZhuKai Dai . Rational constructing of Zn0.5Cd0.5S-diethylenetriamine/g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2O2 production. Chinese Chemical Letters, 2025, 36(9): 111272-. doi: 10.1016/j.cclet.2025.111272

    14. [14]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    15. [15]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    16. [16]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    17. [17]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    18. [18]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    19. [19]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    20. [20]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

Metrics
  • PDF Downloads(862)
  • Abstract views(1269)
  • HTML views(87)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return