Citation:
GUO Zhang-Long, HUANG Li-Qiong, CHU Wei, LUO Shi-Zhong. Effects of Promoter on NiMgAl Catalyst Structure and Performance for Carbon Dioxide Reforming of Methane[J]. Acta Physico-Chimica Sinica,
;2014, 30(4): 723-728.
doi:
10.3866/PKU.WHXB201402242
-
Catalysts were prepared by adding different types of promoter (Co, Ir, or Pt) to the supported nickel catalyst NiMgAl samples. These catalysts were characterized by H2 temperature-programmed reduction (H2-TPR), CO2/CH4 temperature-programmed surface reactions (CO2/CH4-TPSR), and CO2 temperatureprogrammed desorption (CO2-TPD). The effects of the catalyst structure on catalytic performance in the methane dry reforming reaction with carbon dioxide were investigated. The addition of a small amount of promoter (Pt or Ir) can lower the reduction temperature of the nickel active component, and enhance performance in the methane dry reforming reaction. The catalysts with Co or Ir promoter feature lower activation energies than the unmodified NiMgAl catalyst. The activation energy was 51.8 kJ·mol-1 for the NiMgAl sample, decreasing to 26.4 kJ·mol-1 for the NiPtMgAl catalyst, which showed overall better catalytic performance. Results of CH4-TPSR and CO2-TPSR demonstrate that the NiPtMgAl catalyst can generate more active carbon species on the catalyst surface. The CO2-TPD results show that adding a promoter can increase the CO2 adsorbed/desorbed amount compared with the unmodified NiMgAl catalyst over the same reaction temperature range.
-
-
-
[1]
(1) Wang, Q.; Luo, J. Z.; Zhong, Z. Y.; Borgna, A. Energ. Environ. Sci. 2011, 4, 42. doi: 10.1039/c0ee00064g
-
[2]
(2) Chu,W.; Ran, M. F.; Zhang, X.;Wang, N.;Wang, Y. F.; Xie, H. P.; Zhao, X. S. J. Energy Chem. 2013, 22, 136. doi: 10.1016/S2095-4956(13)60018-2
-
[3]
(3) Hansen, J.; Sato, M. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 16109. doi: 10.1073/pnas.0406982101
-
[4]
(4) von der Assen, N.; Jung, J.; Bardow, A. Energ. Environ. Sci. 2013, 6, 2721. doi: 10.1039/c3ee41151f
-
[5]
(5) Serrano-Ruiz, J. C.; Dumesic, J. A. Energ. Environ. Sci. 2011, 4, 83. doi: 10.1039/c0ee00436g
-
[6]
(6) Ashcroft, A. T.; Cheetham, A. K.; Green, M. L. H.; Vernon, P. D. F. Nature 1991, 352, 225. doi: 10.1038/352225a0
-
[7]
(7) Ramos, L.; Zeppieri, S. Fuel 2013, 110, 141. doi: 10.1016/j.fuel.2012.12.045
-
[8]
(8) Chu,W.;Wang, L. N.; Chernavsk, P. A.; Khodakov, A. Y. Angew. Chew. Int. Edit. 2008, 47, 5052. doi: 10.1002/anie.v47:27
-
[9]
(9) Ha, K. S.; Bae, J.W.;Woo, K. J.; Jun, K.W. Environ. Sci. Technol. 2010, 44, 1412. doi: 10.1021/es902784x
-
[10]
(10) Wang, N.; Chu,W.; Zhang, T.; Zhao, X. S. Chem. Eng. J. 2011, 170, 457. doi: 10.1016/j.cej.2010.12.042
-
[11]
(11) Aldashukurova, G. B.; Mironenko, A. V.; Mansurov, Z. A.; Shikina, N. V.; Yashnik, S. A.; Kuznetsov, V. V.; Ismagilov, Z. R. J. Energy Chem. 2013, 22, 811. doi: 10.1016/S2095-4956(13)60108-4
-
[12]
(12) Zhang, J. G.;Wang, H.; Dalai, A. K. J. Catal. 2007, 249, 300 300. doi: 10.1016/j.jcat.2007.05.004
-
[13]
(13) Crisafulli, C.; Scire, S.; Minico, S.; Solarino, L. Appl. Catal. AGen. 2002, 225, 1. doi: 10.1016/S0926-860X(01)00585-3
-
[14]
(14) Meshkani, F.; Rezaei, M. Int. J. Hydrog. Energy 2010, 35, 10295. doi: 10.1016/j.ijhydene.2010.07.138
-
[15]
(15) Chen, Y. G.; Tomishige, K.; Yokoyama, K.; Fujimoto, K. Appl. Catal. A-Gen. 1997, 165, 335. doi: 10.1016/S0926-860X(97)00216-0
-
[16]
(16) Jose-Alonso, D. S.; Illan- mez, M. J.; Roman-Martinez, M. C. Int. J. Hydrog. Energy 2013, 38, 2230. doi: 10.1016/j.ijhydene.2012.11.080
-
[17]
(17) Pawelec, B.; Damyanova, S.; Arishtirova, K.; Fierro, J. L. G.; Petrov, L. Appl. Catal. A-Gen. 2007, 323, 188. doi: 10.1016/j.apcata.2007.02.017
-
[18]
(18) Garcia-Dieguez, M.; Pieta, I. S.; Herrera, M. C.; Larrubia, M. A.; Alemany, L. J. J. Catal. 2010, 270, 136. doi: 10.1016/j.jcat.2009.12.010
-
[19]
(19) Huang, T.; Huang,W.; Huang, J.; Ji, P. Fuel Process. Technol. 2011, 92, 1868. doi: 10.1016/j.fuproc.2011.05.002
-
[20]
(20) Xue,W. J.; Zhang, X. Y.; Li, P.; Liu, Z. T.; Hao, Z. P.; Ma, C. Y. Acta Phys. -Chim. Sin. 2011, 27, 1730. [薛雯娟, 张新艳, 李鹏, 刘昭铁, 郝郑平, 麻春艳. 物理化学学报, 2011, 27, 1730.]d oi: 10.3866/PKU.WHXB20110719
-
[21]
(21) Yao, L.; Zhu, J. Q.; Peng, X. X.; Tong, D. M.; Hu, C.W. Int. J. Hydrog. Energy 2013, 38, 7268. doi: 10.1016/j.ijhydene.2013.02.126
-
[22]
(22) Wang, L.; Li, D. L.; Koike, M.;Watanable, H.; Xu, Y.; Nakagawa, Y.; Tomishige, K. Fuel 2013, 112, 654. doi: 10.1016/j.fuel.2012.01.073
-
[23]
(23) Lin,W.W.; Cheng, H. Y.; He, L. M.; Yu, Y. C.; Zhao, F. Y. J. Catal. 2013, 303, 110. doi: 10.1016/j.jcat.2013.03.002
-
[24]
(24) de Miguel, S. R.; Vilella, I. M. J.; Maina, S. P.; Jose-Alonso, D. S.; Roman-Martinez, M. C.; Illan- mez, M. J. Appl. Catal. AGen. 2012, 435, 10.
-
[25]
(25) El-Temtamy, S. A.; Ghoneim, S. A.; El-Morsy, A. K.; El-Naggar, A. Y.; El-Salamouny, R. A. Petrol Sci. Technol. 2009, 27, 1661. doi: 10.1080/10916460802455897
-
[26]
(26) Yu, X. P.;Wang, N.; Chu,W.; Liu, M. Chem. Eng. J. 2012, 209, 623. doi: 10.1016/j.cej.2012.08.037
-
[27]
(27) Li, C. L.; Fu, Y. L.; Bian, G. Z. Acta Phys. -Chim. Sin. 2003, 19, 902. [李春林, 伏义路, 卞国柱. 物理化学学报, 2003, 19, 902.] doi: 10.3866/PKU.WHXB20031004
-
[28]
(28) Qin, Z. Q.; Gao,W. G.;Wang, H.; Han, C.; Guo,W. Chemical Industry and Engineering Progress 2013, 32, 820. [覃志强, 高文桂, 王华, 韩冲, 郭伟. 化工进展, 2013, 32, 820.]
-
[29]
(29) Wang, N.; Shen, K.; Yu, X. P.; Qian,W. Z.; Chu,W. Catal. Sci. Technol. 2013, 3, 2278. doi: 10.1039/c3cy00299c
-
[1]
-
-
-
[1]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[2]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[3]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[4]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[5]
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
-
[6]
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
-
[7]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[8]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[9]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[10]
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
-
[11]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[12]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[13]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016
-
[14]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[15]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049
-
[16]
Wang Wang , Yucheng Liu , Shengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059
-
[17]
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
-
[18]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[19]
Xueqi Yang , Juntao Zhao , Jiawei Ye , Desen Zhou , Tingmin Di , Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074
-
[20]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[1]
Metrics
- PDF Downloads(613)
- Abstract views(957)
- HTML views(13)