Citation:
TANG Wei, WANG Jing, YAO Peng-Jun, DU Hai-Ying, SUN Yan-Hui. Preparation, Characterization and Gas Sensing Mechanism of ZnO-Doped SnO2 Nanofibers[J]. Acta Physico-Chimica Sinica,
;2014, 30(4): 781-788.
doi:
10.3866/PKU.WHXB201402191
-
SnO2 nanofibers were fabricated by electrospinning, using SnCl2 ·2H2O as the raw material. The influences of ZnO doping on the morphologies, structures, and compositions of the SnO2 nanofibers were studied by introducing different amounts of ZnO into the SnO2. The crystallography and microstructures of the synthesized SnO2/ZnO composite nanofibers with different molar ratios of Sn to Zn were investigated using thermogravimetric/differential thermal analysis (TG-DTA), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) spectroscopy. The obtained SnO2/ZnO composite nanofibers with different ZnO contents had hollow hierarchical structures composed of nanocrystals. Different amounts of ZnO gave different structures. The characterization results showed that the introduction of ZnO into SnO2 played an important role in the SnO2 nanofiber structure. The gas sensing properties of sensors based on different ZnO-doped SnO2 nanofibers were tested. The results indicated that the methanol-sensing performance of the sensor containing SnO2/ZnO in a molar ratio of 1:1 was better than those of the others. The sensing mechanisms of ZnO-doped SnO2 nanofibers were examined in detail. Possible reasons for the enhanced SnO2 nanofibers were fabricated by electrospinning, using SnCl2 ?2H2O as the raw material. The influences of ZnO doping on the morphologies, structures, and compositions of the SnO2 nanofibers were studied by introducing different amounts of ZnO into the SnO2. The crystallography and microstructures of the synthesized SnO2/ZnO composite nanofibers with different molar ratios of Sn to Zn were investigated using thermogravimetric/differential thermal analysis (TG-DTA), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) spectroscopy. The obtained SnO2/ZnO composite nanofibers with different ZnO contents had hollow hierarchical structures composed of nanocrystals. Different amounts of ZnO gave different structures. The characterization results showed that the introduction of ZnO into SnO2 played an important role in the SnO2 nanofiber structure. The gas sensing properties of sensors based on different ZnO-doped SnO2 nanofibers were tested. The results indicated that the methanol-sensing performance of the sensor containing SnO2/ZnO in a molar ratio of 1:1 was better than those of the others. The sensing mechanisms of ZnO-doped SnO2 nanofibers were examined in detail. Possible reasons for the enhanced
-
Keywords:
-
Electrospinning
, - Composite nanofiber,
- Gas sensor,
- Methanol,
- Heterojunction
-
-
-
-
[1]
(1) Wang, J.; Han, Y.; Feng, M.; Chen, J.; Li, X.; Zhang, S. J. Mater. Sci. 2011, 46, 416. doi: 10.1007/s10853-010-4863-z
-
[2]
(2) Zhang, K.; Davis, M.; Qiu, J.; Hope-Weeks, L.;Wang, S. Nanotechnology 2012, 23, 385701. doi: 10.1088/0957-4484/23/38/385701
-
[3]
(3) Yao, J.; Yan, H.; Lieber, C. M. Nat. Nanotechnol. 2013, 8, 329. doi: 10.1038/nnano.2013.55
-
[4]
(4) Wan, Q.; Li, Q.; Chen, Y.;Wang, T.; He, X.; Li, J.; Lin, C. Appl. Phys. Lett. 2004, 84, 3654. doi: 10.1063/1.1738932
-
[5]
(5) Le, D. T. T.; Van Duy, N.; Tan, H. M.; Trung, N. N.; Van, P. T. H.; Hoa, N. D.; Van Hieu, N. J. Mater. Sci. 2013, 48, 7253. doi: 10.1007/s10853-013-7545-9
-
[6]
(6) Sankir, N. D.; Dogan, B. J. Mater. Sci. 2010, 45, 6424. doi: 10.1007/s10853-010-4727-6
-
[7]
(7) Comini, E.; Faglia, G.; Sberveglieri, G.; Calestani, D.; Zanotti, L.; Zha, M. Sens. Actuator B-Chem. 2005, 111, 2.
-
[8]
(8) Banerjee, N.; Bhowmik, B.; Roy, S.; Sarkar, C. K.; Bhattacharyya, P. J. Nanosci. Nanotechnol. 2013, 13, 6826. doi: 10.1166/jnn.2013.7786
-
[9]
(9) Ho, P. Y.; Thiyagu, S.; Kao, S. H.; Kao, C. Y.; Lin, C. F. Nanoscale 2014, 6, 466. doi: 10.1039/c3nr04418a
-
[10]
(10) Kim, M. S.; Lee, S. H.; Yoon, H.; Jung, J. H.; Leem, J. Y. J. Nanosci. Nanotechnol. 2013, 13, 6236. doi: 10.1166/jnn.2013.7688
-
[11]
(11) Zeng, J.; Zhao, C.; Chong, F.; Cao, Y.; Subhan, F.;Wang, Q.; Yu, J.; Zhang, M.; Luo, L.; Ren,W.; Chen, X.; Yan, Z. J. Chromatogr. A 2013, 1319, 21. doi: 10.1016/j.c hroma.2013.10.040
-
[12]
(12) Xia, Y.; Yang, P.; Sun, Y.;Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. Adv. Mater. 2003, 15, 353. doi: 10.1002/adma.200390087
-
[13]
(13) Chen, P. P.;Wang, J.; Yao, P. J.; Du, H. Y.; Li, X. G. Acta Phys. -Chim. Sin. 2012, 28, 1. [陈鹏鹏, 王兢, 姚朋军, 杜海英, 李晓干. 物理化学学报, 2012, 28, 1.] doi: 10.3866/PKU.W HXB2012281
-
[14]
(14) Du, J.; Li, Y. X.; Peng, S. Q.; Lü, G. X.; Li, S. B. J. Funct. Mater. 2005, 36, 1603. [杜娟, 李越湘, 彭绍琴, 吕功煊, 李树本. 功能材料, 2005, 36, 1603.]
-
[15]
(15) Lee, D. J.; Lee, H.; Ryou, M. H.; Han, G. B.; Lee, J. N.; Song, J.; Choi, J.; Cho, K. Y.; Lee, Y. M.; Park, J. K. ACS Appl. Mater. Interfaces 2013, 5, 12005. doi: 10.1021/am403798a
-
[16]
(16) Li, X. Y.; Li, Y. C.; Yu, D. G.; Liao, Y. Z.;Wang, X. Int. J. Mol. Sci. 2013, 14, 21647. doi: 10.3390/ijms141121647
-
[17]
(17) Yu, D. G.; Li, X. Y.; Chian,W.; Li, Y.;Wang, X. Biomed. Mater. Eng. 2014, 24, 695.
-
[18]
(18) Xu, L.;Wang, L.; Si, N.; He, J. J. Control. Release 2013, 172,e131.
-
[19]
(19) Ding, B.;Wang, M.; Yu, J.; Sun, G. Sensors 2009, 9, 1609. doi: 10.3390/s90301609
-
[20]
(20) Wang, Z.; Li, Z.; Jiang, T.; Xu, X.;Wang, C. ACS Appl. Mater. Interfaces 2013, 5, 2013. doi: 10.1021/am3028553
-
[21]
(21) Guan, H.; Shao, C.; Chen, B.; ng, J.; Yang, X. Inorg. Chem. Commun. 2003, 6, 1409. doi: 10.1016/j.inoche.2003.08.021
-
[22]
(22) Yang, X.; Shao, C.; Guan, H.; Li, X.; ng, J. Inorg. Chem. Commun. 2004, 7, 176. doi: 10.1016/j.inoche.2003.10.035
-
[23]
(23) Onozuka, K.; Ding, B.; Tsuge, Y.; Naka, T.; Yamazaki, M.; Sugi, S.; Ohno, S.; Yoshikawa, M.; Shiratori, S. Nanotechnology 2006, 17, 1026. doi: 10.1088/0957-4484/17/4/030
-
[24]
(24) Wang, Y.; Ramos, I.; Santia -Aviles, J. J. IEEE Sens. 2007, 7, 1347. doi: 10.1109/JSEN.2007.905045
-
[25]
(25) Chen, P. P.;Wang, J.; Zhang, C. L.; Hao, Y.W.; Du, H. Y. Acta. Phys. -Chim. Sin. 2013, 29, 1827. [陈鹏鹏, 王兢, 张春丽,郝育闻, 杜海英. 物理化学学报, 2013, 29, 1827.] doi: 10.3866/P KU.WHXB201306091
-
[26]
(26) Zhang, Y.; He, X.; Li, J.; Miao, Z.; Huang, F. Sens. Actuator BChem. 2008, 132, 67. doi: 10.1016/j.snb.2008.01.006
-
[27]
(27) Choi, Y. J.; Hwang, I. S.; Park, J. G.; Choi, K. J.; Park, J. H.; Lee, J. H. Nanotechnology 2008, 19, 095508. doi: 10.1088/0957-4484/19/9/095508
-
[28]
(28) Zheng, Y.;Wang, J.; Yao, P. Sens. Actuators B 2011, 156, doi: 10.1016/j.snb.2011.02.026
-
[29]
(29) Park, J. A.; Moon, J.; Lee, S. J.; Lim, S. C.; Zyung, T. Curr. Appl. Phys. 2009, 9, S210.
-
[30]
(30) Wei, S.; Yu, Y.; Zhou, M. Mater. Lett. 2010, 64, 2284. doi: 10.1016/j.matlet.2010.07.038
-
[31]
(31) Lee, C.; Choi, S.W.; Park, J. Y.; Kim, S. S. Sensor. Lett. 2011, 9, 132. doi: 10.1166/sl.2011.1435
-
[32]
(32) Zhang, Z.; Li, X.;Wang, C.;Wei, L.; Liu, Y.; Shao, C. J. Phys. Chem. C 2009, 113, 19397. doi: 10.1021/jp9070373
-
[33]
(33) Zhao, M.;Wang, X.; Ning, L.; Jia, J.; Li, X.; Cao, L. Sens. Actuator B-Chem. 2011, 156, 588. doi: 10.1016/j.snb.2011.01.070
-
[34]
(34) Song, X.;Wang, Z.; Liu, Y.;Wang, C.; Li, L. Nanotechnology 2009, 20, 075501. doi: 10.1088/0957-4484/20/7/075501
-
[35]
(35) Choi, S.W.; Park, J. Y.; Kim, S. S. Nanotechnology 2009, 20, 465603. doi: 10.1088/0957-4484/20/46/465603
-
[36]
(36) Moon, J.; Park, J. A.; Lee, S. J.; Zyung, T. ETRI J. 2009, 31, 636. doi: 10.4218/etrij.09.1209.0004
-
[37]
(37) Zhang, Z.; Shao, C.; Li, X.; Zhang, L.; Xue, H.;Wang, C.; Liu, Y. J. Phys. Chem. C 2010, 114, 7920. doi: 10.1021/jp100262q
-
[38]
(38) Du, H. Y.;Wang, J.; Yao, P. J.; Hao, Y.W.; Li, X. G. J. Mater. Sci. 2013, 48, 3597. doi: 10.1007/s10853-013-7157-4
-
[39]
(39) Shao, C.; Yang, X.; Guan, H.; Liu, Y.; ng, J. Inorg. Chem. Commun. 2004, 7, 625. doi: 10.1016/j.inoche.2004.03.006
-
[40]
(40) Abdelrazek, E.; Elashmawi, I.; Labeeb, S. Physica B 2010, 405, 2021. doi: 10.1016/j.physb.2010.01.095
-
[41]
(41) Loría-Bastarrachea, M.; Herrera-Kao,W.; Cauich-Rodríguez, J.; Cervantes-Uc, J.; Vázquez-Torres, H.; ávila-Ortega, A. J. Therm. Anal. Calorim. 2011, 104, 737. doi: 10.1007/s10973-010-1061-9
-
[42]
(42) Siddheswaran, R.; Sankar, R.; Babu, M. R.; Rathnakumari, M.; Jayavel, R.; Murugakoothan, P.; Sureshkumar, P. Cryst. Res. Technol. 2006, 41, 446.
-
[43]
(43) Liu, B.; Zeng, H. C. J. Am. Chem. Soc. 2003, 125, 4430. doi: 10.1021/ja0299452
-
[44]
(44) Calatayud, M.; Markovits, A.; Menetrey, M.; Mguig, B.; Minot, C. Catal. Today 2003, 85, 125. doi: 10.1016/S0920-5861(03)00381-X
-
[45]
(45) Hou, C. P.; Li, Y. H.; Ge, X. T.; Fang, D. R.; Shen, L.; Liu, X. Q. Electronic Components and Materials 2004, 23, 17. [侯长平, 李永红, 葛秀涛, 方大儒, 沈玲, 刘杏芹. 电子元件与材料,< B>2004, 23, 17.]
-
[46]
(46) Zheng,W.; Lu, X.;Wang,W.; Li, Z.; Zhang, H.;Wang, Y.; Wang, Z.;Wang, C. Sens. Actuator B-Chem. 2009, 142, 61. doi: 10.1016/j.snb.2009.07.031
-
[47]
(47) Zheng, L.; Zheng, Y.; Chen, C.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K.; Zhu, J. Inorg. Chem. 2009, 48, 1819. doi: 10.1021/ic802293p
-
[48]
(48) Wang, C.; Shao, C.; Zhang, X.; Liu, Y. Inorg. Chem. 2009, 48,7261. doi: 10.1021/ic9005983i, L.; Liu, Y.; Shao, C. J. Phys. Chem. C 2009, 113, 19397. doi: 10.1021/jp9070373
-
[49]
(33) Zhao, M.; Wang, X.; Ning, L.; Jia, J.; Li, X.; Cao, L. Sens. Actuator B-Chem. 2011, 156, 588. doi: 10.1016/j.snb.2011.01.070
-
[50]
(34) Song, X.; Wang, Z.; Liu, Y.; Wang, C.; Li, L. Nanotechnology 2009, 20, 075501. doi: 10.1088/0957-4484/20/7/075501
-
[51]
(35) Choi, S. W.; Park, J. Y.; Kim, S. S. Nanotechnology 2009, 20, 465603. doi: 10.1088/0957-4484/20/46/465603
-
[52]
(36) Moon, J.; Park, J. A.; Lee, S. J.; Zyung, T. ETRI J. 2009, 31, 636. doi: 10.4218/etrij.09.1209.0004
-
[53]
(37) Zhang, Z.; Shao, C.; Li, X.; Zhang, L.; Xue, H.; Wang, C.; Liu, Y. J. Phys. Chem. C 2010, 114, 7920. doi: 10.1021/jp100262q
-
[54]
(38) Du, H. Y.; Wang, J.; Yao, P. J.; Hao, Y. W.; Li, X. G. J. Mater. Sci. 2013, 48, 3597. doi: 10.1007/s10853-013-7157-4
-
[55]
(39) Shao, C.; Yang, X.; Guan, H.; Liu, Y.; ng, J. Inorg. Chem. Commun. 2004, 7, 625. doi: 10.1016/j.inoche.2004.03.006
-
[56]
(40) Abdelrazek, E.; Elashmawi, I.; Labeeb, S. Physica B 2010, 405, 2021. doi: 10.1016/j.physb.2010.01.095
-
[57]
(41) Loría-Bastarrachea, M.; Herrera-Kao, W.; Cauich-Rodríguez, J.; Cervantes-Uc, J.; Vázquez-Torres, H.; ávila-Ortega, A. J. Therm. Anal. Calorim. 2011, 104, 737. doi: 10.1007/s10973-010-1061-9
-
[58]
(42) Siddheswaran, R.; Sankar, R.; Ramesh Babu, M.; Rathnakumari, M.; Jayavel, R.; Murugakoothan, P.; Sureshkumar, P. Cryst. Res. Technol. 2006, 41, 446.
-
[59]
(43) Liu, B.; Zeng, H. C. J. Am. Chem. Soc. 2003, 125, 4430. doi: 10.1021/ja0299452
-
[60]
(44) Calatayud, M.; Markovits, A.; Menetrey, M.; Mguig, B.; Minot, C. Catal. Today 2003, 85, 125. doi: 10.1016/S0920-5861(03)00381-X
-
[61]
(45) Hou, C. P.; Li, Y. H.; Ge, X. T.; Fang, D. R.; Shen, L.; Liu, X. Q. E. C. & M. 2004, 23, 17. [侯长平, 李永红, 葛秀涛, 方大儒, 沈玲, 刘杏芹. 电子元件与材料, 2004, 23, 17.]
-
[62]
(46) Zheng, W.; Lu, X.; Wang, W.; Li, Z.; Zhang, H.; Wang, Y.; Wang, Z.; Wang, C. Sens. Actuator B-Chem. 2009, 142, 61. doi: 10.1016/j.snb.2009.07.031
-
[63]
(47) Zheng, L.; Zheng, Y.; Chen, C.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K.; Zhu, J. Inorg. Chem. 2009, 48, 1819. doi: 10.1021/ic802293p
-
[64]
(48) Wang, C.; Shao, C.; Zhang, X.; Liu, Y. Inorg. Chem. 2009, 48, 7261. doi: 10.1021/ic9005983
-
[1]
-
-
-
[1]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[2]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
-
[3]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030
-
[4]
Yujia LI , Tianyu WANG , Fuxue WANG , Chongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314
-
[5]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[6]
Kun Rong , Cuilian Wen , Jiansen Wen , Xiong Li , Qiugang Liao , Siqing Yan , Chao Xu , Xiaoliang Zhang , Baisheng Sa , Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053
-
[7]
Jiawei Hu , Kai Xia , Ao Yang , Zhihao Zhang , Wen Xiao , Chao Liu , Qinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043
-
[8]
Tong WANG , Qinyue ZHONG , Qiong HUANG , Weimin GUO , Xinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011
-
[9]
Yuhang Zhang , Weiwei Zhao , Hongwei Liu , Junpeng Lü . Progress on Self-Powered Photodetectors Based on Low-Dimensional Materials. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-0. doi: 10.3866/PKU.WHXB202310004
-
[10]
Yang Meiqing , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046
-
[11]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016
-
[12]
Shi-Yu Lu , Wenzhao Dou , Jun Zhang , Ling Wang , Chunjie Wu , Huan Yi , Rong Wang , Meng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024
-
[13]
Ke Zhao , Zhen Liu , Luyao Liu , Changyuan Yu , Jingshun Pan , Xuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029
-
[14]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[15]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[16]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005
-
[17]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[18]
Xingchao Zhao , Xiaoming Li , Ming Liu , Zijin Zhao , Kaixuan Yang , Pengtian Liu , Haolan Zhang , Jintai Li , Xiaoling Ma , Qi Yao , Yanming Sun , Fujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021
-
[19]
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
-
[20]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[1]
Metrics
- PDF Downloads(629)
- Abstract views(921)
- HTML views(1)