Citation: JIN Zhao, LIU Jian, WANG Li-Li, CAO Feng-Lei, SUN Huai. Development and Validation of an All-Atom Force Field for the Energetic Materials TATB, RDX and HMX[J]. Acta Physico-Chimica Sinica, ;2014, 30(4): 654-661. doi: 10.3866/PKU.WHXB201402113 shu

Development and Validation of an All-Atom Force Field for the Energetic Materials TATB, RDX and HMX

  • Received Date: 25 December 2013
    Available Online: 11 February 2014

    Fund Project:

  • An all-atom force field was developed and validated for three energetic materials 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3, 5,7-tetrazocine (HMX). The functional form of the force field is widely used. The valence parameters were derived by fitting the quantum mechanics data. The atomic charge and van der Waals (VDW) parameters were optimized by fitting experimental data such as densities and sublimation enthalpies of the molecular crystals. The force field was validated by calculating the molecular conformers in the gas phase and the physical properties of the molecular crystals. It is demonstrated that the force field performs well in predicting molecular structures, vibrational frequencies, lattice parameters, crystalline densities, and sublimation enthalpies. Further validation showed that the force field predicts the equation of states and the bulk modulus well.

  • 加载中
    1. [1]

      (1) Gee, R. H.; Maiti, A.; Bastea, S.; Fried, L. E. Macromolecules 2007, 40, 3422. doi: 10.1021/ma0702501

    2. [2]

      (2) Maiti, A.; Gee, R. H.; Hoffman, D. M.; Fried, L. E. J. Appl. Phys. 2008, 103, 053504. doi: 10.1063/1.2838319

    3. [3]

      (3) Xiao, J.; Huang, H.; Li, J.; Zhang, H.; Zhu, W.; Xiao, H. J. Mater. Sci. 2008, 43, 5685. doi: 10.1007/s10853-008-2704-0

    4. [4]

      (4) Xu, X.; Xiao, J.; Huang, H.; Li, J.; Xiao, H. J. Hazard. Mater. 2010, 175, 423. doi: 10.1016/j.jhazmat.2009.10.023

    5. [5]

      (5) Zhou, Y.; Long, X.; Wei, X. J. Mol. Model. 2011, 17, 3015. doi: 10.1007/s00894-011-0977-8

    6. [6]

      (6) Huang, Y. C.; Hu, Y. J.; Xiao, J. J.; Yin, K. L.; Xiao, H. M. Acta Phys. -Chim. Sin. 2005, 21, 425. [黄玉成, 胡应杰, 肖继军, 殷开梁, 肖鹤鸣. 物理化学学报, 2005, 21, 425.] doi: 10.3866/PKU.WHXB20050416

    7. [7]

      (7) Xiao, J. J.; Gu, C. G.; Fang, G. Y.; Zhu, W.; Xiao, H. M. Acta Chim. Sin. 2005, 63, 439. [肖继军, 谷成刚, 方国勇, 朱伟, 肖鹤鸣. 化学学报, 2005, 63, 439.]

    8. [8]

      (8) Sorescu, D. C.; Rice, B. M.; Thompson, D. L. J. Phys. Chem. B 1997, 101, 798. doi: 10.1021/jp9624865

    9. [9]

      (9) Sorescu, D. C.; Rice, B. M.; Thompson, D. L. J. Phys. Chem. B 1998, 102, 6692. doi: 10.1021/jp981661+

    10. [10]

      (10) Smith, G. D.; Bharadwaj, R. K. J. Phys. Chem. B 1999, 103, 3570. doi: 10.1021/jp984599p

    11. [11]

      (11) Boyd, S.; Gravelle, M.; Politzer, P. J. Chem. Phys. 2006, 124, 104508. doi: 10.1063/1.2176621

    12. [12]

      (12) Gee, R. H.; Roszak, S.; Balasubramanian, K.; Fried, L. E. J. Chem. Phys. 2004, 120, 7059. doi: 10.1063/1.1676120

    13. [13]

      (13) Plimpton, S. J. Comput. Phys. 1995, 117, 1. doi: 10.1006/jcph.1995.1039

    14. [14]

      (14) Plimpton, S. LAMMPS:Large-Scale Atomic/Molecular Massively Parallel Simulator. http://lammps.sandia. v.

    15. [15]

      (15) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. J. Comput. Chem. 2005, 26, 1781. 10.1002/(ISSN)1096-987X

    16. [16]

      (16) Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. J. Comput. Chem. 2005, 26, 1701. doi: 10.1002/(ISSN)1096-987X

    17. [17]

      (17) Cady, H. H.; Larson, A. C. Acta Crystallogr. 1965, 18, 485. doi: 10.1107/S0365110X6500107X

    18. [18]

      (18) Choi, C.; Prince, E. Acta Crystallogr. Sect. B 1972, 28, 2857. doi: 10.1107/S0567740872007046

    19. [19]

      (19) Cady, H. H.; Smith, L. C. Los Alamos Scientific Laboratory Report LAMS-2652 TID-4500; Los Alamos National Laboratory: Los Alamos, NM, 1961.

    20. [20]

      (20) Choi, C. S.; Boutin, H. P. Acta Crystallogr. Sect. B 1970, 26, 1235. doi: 10.1107/S0567740870003941

    21. [21]

      (21) Cady, H. H.; Larson, A. C.; Cromer, D. T. Acta Crystallogr. 1963, 16, 617. doi: 10.1107/S0365110X63001651

    22. [22]

      (22) Cobbledick, R.; Small, R. Acta Crystallogr. Sect. B 1974, 30, 1918. doi: 10.1107/S056774087400611X

    23. [23]

      (23) Direct Force Field, 7.1; Aeon Technology Inc.: San Die , CA, USA, 2012.

    24. [24]

      (24) Rice, B. M.; Chabalowski, C. F. J. Phys. Chem. A 1997, 101, 8720. doi: 10.1021/jp972062q

    25. [25]

      (25) Riley, K. E.; Op't Holt, B. T.; Merz, K. M. J. Chem. Theory Comput. 2007, 3, 407. doi: 10.1021/ct600185a

    26. [26]

      (26) Breneman, C. M.; Wiberg, K. B. J. Comput. Chem. 1990, 11, 361. doi: 10.1002/(ISSN)1096-987X

    27. [27]

      (27) Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833. doi: 10.1063/1.1740588

    28. [28]

      (28) Frisch, M.; Trucks, G.; Schlegel, H.; et al. Gaussian 03, Revision C.02; Gaussian Inc.: Wallingford, CT, USA, 2004.

    29. [29]

      (29) Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. J. Am. Chem. Soc. 1996, 118, 11225. doi: 10.1021/ja9621760

    30. [30]

      (30) Sun, H. J. Phys. Chem. B 1998, 102, 7338. doi: 10.1021/jp980939v

    31. [31]

      (31) Rosen, J. M.; Dickinson, C. J. Chem. Eng. Data 1969, 14, 120. doi: 10.1021/je60040a044

    32. [32]

      (32) Taylor, J. W.; Crookes, R. J. J. Chem. Soc., Faraday Trans. 1976, 72, 723. doi: 10.1039/f19767200723

    33. [33]

      (33) Bedrov, D.; Ayyagari, C.; Smith, G. D.; Sewell, T. D.; Menikoff, R.; Zaug, J. M. J. Comput. Aided Mater. Des. 2001, 8, 77. doi: 10.1023/A:1020046817543

    34. [34]

      (34) Rai, N.; Bhatt, D.; Siepmann, J. I.; Fried, L. E. J. Chem. Phys. 2008, 129, 194510. doi: 10.1063/1.3006054

    35. [35]

      (35) Stevens, L. L.; Velisavljevic, N.; Hooks, D. E.; Dattelbaum, D. M. Propellants, Explos., Pyrotech. 2008, 33, 286. doi: 10.1002/prep.v33:4

    36. [36]

      (36) Bedrov, D.; Borodin, O.; Smith, G. D.; Sewell, T. D.; Dattelbaum, D. M.; Stevens, L. L. J. Chem. Phys. 2009, 131, 224703. doi: 10.1063/1.3264972

    37. [37]

      (37) Olinger, B.; Roof, B.; Cady, H. In Proceedings of International Symposium on High Dynamic Pressures Commissariat al Energie Atomique:Paris, France, 1978; p 3.

    38. [38]

      (38) Zheng, L.; Thompson, D. L. J. Chem. Phys. 2006, 125, 084505. 10.1063/1.2238860

    39. [39]

      (39) Sorescu, D. C.; Rice, B. M.; Thompson, D. L. J. Phys. Chem. B 1999, 103, 6783. doi: 10.1021/jp991202o


  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    3. [3]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    5. [5]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    6. [6]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    7. [7]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    8. [8]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

    9. [9]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    10. [10]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    11. [11]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    12. [12]

      Ruilan Fan Xiaoling Huang . 磷源的选择及三种含磷阻燃剂的合成与阻燃性. University Chemistry, 2025, 40(8): 181-191. doi: 10.12461/PKU.DXHX202410025

    13. [13]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    14. [14]

      Fengmiao Yu Yang Sheng Chanyue Li Bao Li . The Three Lives of Aspirin. University Chemistry, 2024, 39(9): 115-121. doi: 10.12461/PKU.DXHX202402033

    15. [15]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    16. [16]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    17. [17]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    18. [18]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    19. [19]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    20. [20]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

Metrics
  • PDF Downloads(838)
  • Abstract views(916)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return