Citation: LI Yan-Rong, PEI Yi-Qiang, QIN Jing, ZHANG Miao. A Reaction Mechanismof Polycyclic Aromatic Hydrocarbons for Gasoline Surrogate Fuels TRF[J]. Acta Physico-Chimica Sinica, ;2014, 30(6): 1017-1026. doi: 10.3866/PKU.WHXB201401251 shu

A Reaction Mechanismof Polycyclic Aromatic Hydrocarbons for Gasoline Surrogate Fuels TRF

  • Received Date: 16 January 2014
    Available Online: 2 April 2014

    Fund Project:

  • A detailed reaction mechanism consisting of 287 species and 1569 reactions for gasoline surrogate fuels TRF (toluene reference fuels) with particular emphasis on the development of an accurate model for the formation of large polycyclic aromatic hydrocarbons (PAHs) has been researched and developed in this study. Four different types of reaction pathway for the growth of the PAHs were added to the new mechanism with the largest chemical species of this mechanism being pyrene (C20H12). Species, such as acetylene (C2H2), propargyl (C3H3), vinylacetylene (C4H4), and hydrocarbons with odd number of carbon atoms, such as cyclopentadienyl (C5H5) and indenyl (C9H7), played an important role in the formation and growth of PAH molecules, based on the analysis of PAH rate of production. This mechanism could be used to predict the ignition delay timing, mole fractions of several small important species, such as the PAH precursors C2H2 and C3H4, and mole fractions of the PAHs in the flames of the primary reference fuels (PRF) and TRF. Comparisons between the calculated and experimental results indicated the od predictability of this mechanism over a wide range of temperatures, pressures, and equivalence ratios. Results showthat this TRF mechanismcan be used to reliably predict the soot precursor PAHs.

  • 加载中
    1. [1]

      (1) Li, J.; ng, Y. F.; Li, W.; Chen, H. E.; Liu, J. Y.; Li, J. C.; Li, K.; Dou, H. L. Journal of Xi'an Jiaotong University 2010, 44 (7), 9. [李俊, 宫艳峰, 李伟, 陈海娥, 刘金玉,李金城, 李康, 窦慧莉.西安交通大学学报, 2010, 44 (7), 9.] doi: 10.7652/xjtuxb201401001

    2. [2]

      (2) Gao, J. H.; Li, Y.; Gao, J. D.; Liu, S. X.; Qin, K. J. Journal of Jilin University (Engineering and Technology Edition) 2010, 40, 947. [高俊华,李淯,高继东, 刘双喜,秦孔建. 吉林大学学报(工学版), 2010, 40, 947.]

    3. [3]

      (3) Pan, S. Z.; Song, C. L.; Pei, Y. Q.; Yuan, D.;Wu, W. L. Journal of Tianjin University (Science and Technology Edition) 2013, 7, 629. [潘锁柱, 宋崇林,裴毅强, 原达,吴威龙. 天津大学学报(自然科学与工程技术版), 2013, 7, 629.]

    4. [4]

      (4) Wang, H.; Frenklach, M. Combust. Flame 1997, 110, 173. doi: 10.1016/S0010-2180(97)00068-0

    5. [5]

      (5) Raj, A.; Prada, I. D. C.; Amer, A. A.; Chung, S. H. Combust. Flame 2012, 159, 500. doi: 10.1016/j.combustflame.2011.08.011

    6. [6]

      (6) Andrae, J. C. G.; Head, R. A. Combust. Flame 2009, 156, 842. doi: 10.1016/j.combustflame.2008.10.002

    7. [7]

      (7) Blanquart, G.; Pepiot-Desjardins, P.; Pitsch, H. Combust. Flame 2009, 156, 588. doi: 10.1016/j.combustflame.2008.12.007

    8. [8]

      (8) Sakai, Y.; Miyoshi, A.; Koshi, M.; Pitz, W. J. Proc. Combust. Inst. 2009, 32, 411. doi: 10.1016/j.proci.2008.06.154

    9. [9]

      (9) Andrae, J. C. G.; Brinck, T.; Kalghatgi, G. T. Combust. Flame 2008, 155, 696. doi: 10.1016/j.combustflame.2008.05.010

    10. [10]

      (10) Marchal, C.; Delfau, J. L.; Vovelle, C.; Moréac, G.; Mounaim-Rousselle, C.; Mauss, F. Proc. Combust. Inst. 2009, 32, 753. doi: 10.1016/j.proci.2008.06.115

    11. [11]

      (11) Zhang, L.; Cai, J.; Zhang, T.; Qi, F. Combust. Flame 2010, 157, 1686. doi: 10.1016/j.combustflame.2010.04.002

    12. [12]

      (12) Sakai, Y.; Ozawa, H.; Ogura, T.; Miyoshi, A.; Koshi, M.; Pize, W. J. Effects of Toluene Addition to Primary Reference Fuel at High Temperature. In Powertrain&Fluid Systems, SAE Internal, Rosemont, lllinois, Oct. 29-Nov. 1, 2007.

    13. [13]

      (13) Frenklach, M.; Wang, H. Proc. Combust. Inst. 2002, 29, 2307. doi: 10.1016/S1540-7489(02)80281-4

    14. [14]

      (14) D′Anna, A.; Kent, J. H. Combust. Flame 2003, 132, 715. doi: 10.1016/S0010-2180(02)00522-9

    15. [15]

      (15) McEnally, C. S.; Pfefferle, L. D.; Atakan, B.; Kohse-Hinghaus, K. Prog. Energy Combust. Sci. 2006, 32, 247. doi: 10.1016/j.pecs.2005.11.003

    16. [16]

      (16) Moriarty, N. W.; Frenklach, M. Proc. Combust. Inst. 2000, 28, 2563. doi: 10.1016/S0082-0784(00)80673-6

    17. [17]

      (17) Aguilera-Iparraguirre, A. J.; Klopper, W. J. Chem. Theory Comput. 2007, 3, 139. doi: 10.1021/ct600255u

    18. [18]

      (18) Marinov, N. M.; Pitz, W. J.; Westbrook, C. K.; Castaldi, M. J.; Senkan, S. M. Combust. Sci. Technol. 1996, 116, 211.

    19. [19]

      (19) Sharma, S.; Green, W. H. J. Phys. Chem. A 2009, 113, 8871. doi: 10.1021/jp900679t

    20. [20]

      (20) Slavinskaya, N. A.; Frank, P. Combust. Flame 2009, 156, 1705. doi: 10.1016/j.combustflame.2009.04.013

    21. [21]

      (21) Kee, R. J.; Rupley, F. M.; Miller, J. A.; Coltrin, M. E.; et al . CHEMKIN PRO, Release 15112; Reaction Design: San Die , 2011.

    22. [22]

      (22) Fieweger, K.; Blumenthal, R.; Adomeit, G. Combust. Flame 1997, 109 (4), 599. doi: 10.1016/S0010-2180(97)00049-7

    23. [23]

      (23) Shen, H. P. S.; Vanderover, J.; Oehlschlaeger, M. A. Proc. Combust. Inst. 2009, 32,165. doi: 10.1016/j.proci.2008.05.004

    24. [24]

      (24) Gauthier, B. M.; Davidson, D. F.; Hanson, R. K. Combust. Flame 2004, 139, 300. doi: 10.1016/j.combustflame.2004.08.015

    25. [25]

      (25) Vanhove, G.; Petit, G.; Minetti, R. Combust. Flame 2006, 145, 512. doi: 10.1016/j.combustflame.2006.01.002

    26. [26]

      (26) Bakali, A. E.; Delfau, J. L.; Vovelle, C. Combust. Sci. Technol. 1998, 140, 69. doi: 10.1080/00102209808915768

    27. [27]

      (27) Inal, F.; Senkan, S. M. Combust. Flame 2002, 132, 16.


  • 加载中
    1. [1]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    2. [2]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    3. [3]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    4. [4]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    5. [5]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    6. [6]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    7. [7]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    8. [8]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    9. [9]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    10. [10]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    11. [11]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    12. [12]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    13. [13]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    14. [14]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    15. [15]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    16. [16]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    17. [17]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    18. [18]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    19. [19]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    20. [20]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

Metrics
  • PDF Downloads(599)
  • Abstract views(928)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return