Citation:
PEI Juan, HAO Yan-Zhong, SUN Bao, LI Ying-Pin, FAN Long-Xue, SUN Shuo, WANG Shang-Xin. Heterojunction Interface Modification and Its Effect on the Photovoltaic Performance of Hybrid Solar Cells[J]. Acta Physico-Chimica Sinica,
;2014, 30(3): 397-407.
doi:
10.3866/PKU.WHXB201401202
-
Much attention has been focused on hybrid solar cells because of their low cost and high theoretical efficiencies. The photoactive layer of hybrid solar cells is composed of inorganic semiconductor and organic conjugated polymer. Excitons (electron-hole pairs) are formed upon the absorption of photons by the polymer. The excitons diffuse to the heterojunction interface between the organic donor and inorganic acceptor, and then dissociate to free electrons and holes. These electrons and holes then transfer to the inorganic and organic materials to realize charge separation and transportation. The exciton dissociation efficiency at the organic-inorganic heterojunction interface influences the photovoltaic performance of the cell. A small contact area and poor chemical compatibility between the organic and inorganic materials decrease the exciton dissociation efficiency, and thus the overall cell efficiency. This can be overcome by modifying the heterojunction interface. This paper reviews available interfacial modification methods, their function and significance, and explores prospects for the future development and application of hybrid solar cells.
-
-
-
[1]
(1) Green, M. A. Physlca E 2002, 14, 11. doi: 10.1016/S1386-9477(02)00354-5
-
[2]
(2) Cohen, M. J.; Harris, J. S. Appl. Phys. Lett. 1978, 33 (9), 812. doi: 10.1063/1.90537
-
[3]
(3) Weinberger, B. R.; Gau, S. C.; Kiss, Z. Appl. Phys. Lett. 1981, 38 (7), 555. doi: 10.1063/1.92410
-
[4]
(4) Tang, C.W. Appl. Phys. Lett. 1986, 48 (2), 183. doi: 10.1063/1.96937
-
[5]
(5) Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.;Wudl, F. Science 1992, 258, 1474. doi: 10.1126/science.258.5087.1474
-
[6]
(6) Li, G.; Zhu, R.; Yang, Y. Nature Photon. 2012, 6, 153. doi: 10.1038/nphoton.2012.11
-
[7]
(7) Brabec, C. J.; wrisanker, S.; Halls, J. J. M.; Laird, D.; Jia, S.; Williams, S. P. Adv. Mater. 2010, 22 (34), 3839. doi: 10.1002/adma.200903697
-
[8]
(8) Chen, J.; Song, J. L.; Sun, X.W.; Deng,W. Q.; Jiang, C. Y.; Lei, W.; Huang, J. H.; Liu, R. S. Appl. Phys. Lett. 2009, 94 (15), 153115. doi: 10.1063/1.3117221
-
[9]
(9) Sun, B. Q.; Marx, E.; Greenham, N. C. Nano Lett. 2003, 3 (7), 961. doi: 10.1021/nl0342895
-
[10]
(10) Sun, B. Q.; Greenham, N. C. Phys. Chem. Chem. Phys. 2006, 8 (30), 3557. doi: 10.1039/b604734n
-
[11]
(11) Hao, Y. Z.; Ma, J. X.; Sun, B.; Li, Y. P.; Ren, J. J. Acta Chimica Sinica 2010, 68 (1), 33. [郝彦忠, 马洁霞, 孙宝, 李英品, 任聚杰. 化学学报, 2010, 68 (1), 33.]
-
[12]
(12) Jiang, X. X.; Chen, F.; Qiu,W. M.; Yan, Q. X.; Nan, Y. X.; Xu, H.; Yang, L. G.; Chen, H. Z. Sol. Energy Mater. Sol. Cells 2010, 94 (12), 2223. doi: 10.1016/j.solmat.2010.07.016
-
[13]
(13) Wang, L.; Liu, Y. S.; Jiang, X.; Qin, D. H.; Cao, Y. J. Phys. Chem. C 2007, 111 (26), 9538. doi: 10.1021/jp0715777
-
[14]
(14) Guo, Y. B.; Li, Y. L.; Xu, J. J.; Liu, X. F.; Xu, J. L.; Lv, J.; Huang, C. S.; Zhu, M.; Cui, S.; Jiang, L.; Liu, H. B.;Wang, S. J. Phys. Chem. C 2008, 112 (22), 8223. doi: 10.1021/jp800456c
-
[15]
(15) Bouclé, J.; Chyla, S.; Shaffer, M. S. P.; Durrant, J. R.; Bradley, D. D. C.; Nelson, J. Adv. Funct. Mater. 2008, 18 (4), 622.
-
[16]
(16) Xu, T. T.; Qiao, Q. Q. Energy Environ. Sci. 2011, 4 (8), 2700. doi: 10.1039/c0ee00632g
-
[17]
(17) Lira-Cantu, M.; Krebs, F. C. Sol. Energy Mater. Sol. Cells 2006, 90 (14), 2076. doi: 10.1016/j.solmat.2006.02.007
-
[18]
(18) Krebs, F. C. Sol. Energy Mater. Sol. Cells 2008, 92 (7), 715. doi: 10.1016/j.solmat.2008.01.013
-
[19]
(19) Monson, T. C.; Lloyd, M. T.; Olson, D. C.; Lee, Y. J.; Hsu, J.W. P. Adv. Mater. 2008, 20 (24), 4755. doi: 10.1002/adma.v20:24
-
[20]
(20) Oosterhout, S. D.;Wienk, M. M.; Bavel, S. S.; Thiedmann, R.; Koster, L. J. A.; Gilot, J.; Loos, J.; Schmidt, V.; Janssen, R. A. J. Nat. Mater. 2009, 8, 818. doi: 10.1038/nmat2533
-
[21]
(21) Moet, D. J. D.; Koster, L. J. A.; Boer, B. D.; Blom, P.W. M. Chem. Mater. 2007, 19 (24), 5856. doi: 10.1021/cm070555u
-
[22]
(22) Yu, G.; Gao, J.; Hummelen, J. C.;Wudl, F.; Heeger, A. J. Science 1995, 270, 1789. doi: 10.1126/science.270.5243.1789
-
[23]
(23) Zhou, Y. F.; Eck, M.; Krüger, M. Energy Environ. Sci. 2010, 3 (12), 1851. doi: 10.1039/c0ee00143k
-
[24]
(24) Skompska, M. Synthetic Metals 2010, 160 (1-2), 1. doi: 10.1016/j.synthmet.2009.10.031
-
[25]
(25) Yang, J. M.; Peng, Y. L.; Tian, Q.W.; Chen, Z. G. Modern Chemical Industry 2011, 31 (10), 24. [杨健茂, 彭彦玲, 田启威, 陈志钢. 现代化工, 2011, 31 (10), 24.]
-
[26]
(26) Peng, X. M. Preparation of Polythiophene/ZnO Nanocrystal Bulk Heterojunction Hybrids for Photo-Electricity Devices. Master Dissertation, Nanchang University, Nanchang, 2010. [彭小明. 基于光电器件活性层聚噻吩/ZnO 杂化体系异质结的制备与研究[M]. 南昌: 南昌大学, 2010.]
-
[27]
(27) Saunders, B. R. Journal of Colloid and Interface Science 2012, 369 (1), 1. doi: 10.1016/j.jcis.2011.12.016
-
[28]
(28) Wright, M.; Uddin, A. Sol. Energy Mater. Sol. Cells 2012, 107, 87. doi: 10.1016/j.solmat.2012.07.006
-
[29]
(29) Lin, Y. Y.; Chu, T. H.; Li, S. S.; Chuang, C. H.; Chang, C. H.; Su,W. F.; Chang, C. P.; Chu, M.W.; Chen, C.W. J. Am. Chem. Soc. 2009, 131 (10), 3644. doi: 10.1021/ja8079143
-
[30]
(30) Weickert, J.; Auras, F.; Bein, T.; Schmidt-Mende, L. J. Phys. Chem. C 2011, 115 (30), 15081. doi: 10.1021/jp203600z
-
[31]
(31) h, C.; Scully, S. R.; McGehee, M. D. J. Appl. Phys. 2007, 101 (11), 114503. doi: 10.1063/1.2737977
-
[32]
(32) Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11 (5), 374
-
[33]
(33) Garza, L.; Saponjic, Z. V.; Dimitrijevic, N. M.; Thurnauer, M. C.; Rajh, T. J. Phys. Chem. B 2006, 110 (2), 680. doi: 10.1021/jp054128k
-
[34]
(34) Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Chem. Rev. 2010, 110, 389. doi: 10.1021/cr900137k
-
[35]
(35) Yin, Y. D.; Alivisatos, A. P. Nature 2005, 437, 644.
-
[36]
(36) Greenham, N. C.; Peng, X. G.; Alivisatos, A. P. Phys. Rev. B 1996, 54 (24), 17628. doi: 10.1103/PhysRevB.54.17628
-
[37]
(37) Seo, J.; Kim,W. J.; Kim, S. J.; Lee, K. S.; Cartwright, A. N.; Prasad, P. N. Appl. Phys. Lett. 2009, 94 (13), 133302. doi: 10.1063/1.3110969
-
[38]
(38) Liu, J. C.;Wang,W. L.; Yu, H. Z.;Wu, Z. L.; Peng, J. B.; Cao, Y. Sol. Energy Mater. Sol. Cells 2008, 92 (11), 1403. doi: 10.1016/j.solmat.2008.05.017
-
[39]
(39) Park, I.; Lim, Y.; Noh, S.; Lee, D.; Meister, M.; Amsden, J. J.; Laquai, F.; Lee, C.; Yoon, D. Y. Organic Electronics 2011, 12, 424. doi: 10.1016/j.orgel.2010.12.002
-
[40]
(40) Celik, D.; Krueger, M.; Veit, C.; Schleiermacher, H. F.; Zimmermann, B.; Allard, S.; Dumsch, I.; Scherf, U.; Rauscher, F.; Niyamakom, P. Sol. Energy Mater. Sol. Cells 2012, 98, 433. doi: 10.1016/j.solmat.2011.11.049
-
[41]
(41) Freitas, F. S.; Clifford, J. N.; Palomares, E.; Noqueira, A. F. Phys. Chem. Chem. Phys. 2012, 14, 11990. doi: 10.1039/c2cp41706e
-
[42]
(42) Canesi, E. V.; Binda, M.; Abate, A.; Guarnera, S.; Moretti, L.; D'Innocenzo, V.; Kumar, R. S. S.; Bertarelli, C.; Abrusci, A.; Snaith, H.; Calloni, A.; Brambilla, A.; Ciccacci, F.; Aghion, S.; Moia, F.; Ferragut, R.; Melis, C.; Malloci, G.; Mattoni, A.; Lanzani, G.; Petrozza, A. Energy Environ. Sci. 2012, 5 (10), 9068. doi: 10.1039/c2ee22212d
-
[43]
(43) Huynh,W. U.; Dittmer, J. J.; Teclemariam, N.; Milliron, D. J.; Alivisatos, A. P.; Barnham,W. J. Phys. Rev. B 2003, 67 (11), 115326. doi: 10.1103/PhysRevB.67.115326
-
[44]
(44) Wang, Z. J.; Qu, S. C.; Zeng, X. B.; Liu, J. P.; Zhang, C. S.; Tan, F. R.; Jin, L.;Wang, Z. G. Applied Surface Science 2008, 255 (5), 1916. doi: 10.1016/j.apsusc.2008.06.138
-
[45]
(45) Huynh,W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425. doi: 10.1126/science.1069156
-
[46]
(46) Cheng, C.W.; Fan, H. J. Nano Today 2012, 7 (4), 327. doi: 10.1016/j.nantod.2012.06.002
-
[47]
(47) Dayal, S.; Kopidakis, N.; Olson, D. C.; Ginley, D. S.; Rumbles, G. Nano Lett. 2010, 10 (1), 239. doi: 10.1021/nl903406s
-
[48]
(48) Gur, I.; Fromer, N. A.; Chen, C. P.; Kanaras, A. G.; Alivisatos, A. P. Nano Lett. 2007, 7 (2), 409. doi: 10.1021/nl062660t
-
[49]
(49) Greene, L. E.; Law, M.; Yuhas, B. D.; Yang, P. D. J. Phys. Chem. C 2007, 111 (50), 18451. doi: 10.1021/jp077593l
-
[50]
(50) Piris, J.; Kopidakis, N.; Olson, D. C.; Shaheen, S. E.; Ginley, D. S.; Rumbles, G. Adv. Funct.Mater. 2007, 17 (18), 3849.
-
[51]
(51) Coakley, K. M.; Srinivasan, B. S.; Ziebarth, J. M.; h, C.; Liu, Y.; McGehee, D. Adv. Funct. Mater. 2005, 15 (12), 1927.
-
[52]
(52) Olson, D. C.; Piris, J.; Collins, R. T.; Shaheen, S. E.; Ginley, D. S. Thin Solid Films 2006, 496 (1), 26. doi: 10.1016/j.tsf.2005.08.179
-
[53]
(53) Xi, D. J.; Zhang, H.; Furst, S.; Chen, B.; Pei, Q. B. J. Phys. Chem. C 2008, 112 (49), 19765. doi: 10.1021/jp807868j
-
[54]
(54) Takanezawa, K.; Hirota, K.;Wei, Q. S.; Tajima, K.; Hashimoto, K. J. Phys. Chem. C 2007, 111 (19), 7218. doi: 10.1021/jp071418n
-
[55]
(55) Feng, Z. F.; Zhang, Q. B.; Lin, L. L.; Guo, H. H.; Zhou, J. Z.; Lin, Z. H. Chem. Mater. 2010, 22 (9), 2705. doi: 10.1021/cm901703d
-
[56]
(56) Janáky, C.; Bencsik, G.; Rácz, Á.; Visy, C.; Tacconi, N. R.; Chanmanee,W.; Rajeshwar, K. Langmuir 2010, 26 (16), 13697. doi: 10.1021/la101300n
-
[57]
(57) Yodyingyong, S.; Zhou, X. Y.; Zhang, Q. F.; Triampo, D.; Xi, J. T.; Park, K.; Limketkai, B.; Cao, G. Z. J. Phys. Chem. C 2010, 114 (49), 21851. doi: 10.1021/jp1077888
-
[58]
(58) Hao, Y. Z.; Pei, J.;Wei, Y.; Cao, Y. H.; Jiao, S. H.; Zhu, F.; Li, J. J.; Xu, D. S. J. Phys. Chem. C 2010, 114 (18), 8622. doi: 10.1021/jp911263d
-
[59]
(59) Sun, B.; Hao, Y. Z.; Guo, F.; Cao, Y. H.; Zhang, Y. H.; Li, Y. P.; Xu, D. S. J. Phys. Chem. C 2012, 116 (1), 1395. doi: 10.1021/jp206067m
-
[60]
(60) Hao, Y. Z.; Cao, Y. H.; Sun, B.; Li, Y. P.; Zhang, Y. H.; Xu, D. S. Sol. Energy Mater. Sol. Cells 2012, 101, 107. doi: 10.1016/j.solmat.2012.02.032
-
[61]
(61) Yang, X. F.; Zhuang, J. L.; Li, X. Y.; Chen, D. H.; Ouyang, G. F.; Mao, Z. Q.; Han, Y. X.; He, Z. H.; Liang, C. L.;Wu, M. M.; Yu, J. C. ACS Nano 2009, 3 (5), 1212. doi: 10.1021/nn900084e
-
[62]
(62) Ko, S. H.; Lee, D.; Kang, H.W.; Nam, K. H.; Yeo, J. Y.; Hong, S. J.; Gri ropoulos, C. P.; Sung, H. J. Nano Lett. 2011, 11 (2), 666. doi: 10.1021/nl1037962
-
[63]
(63) Pei, J.; Peng, S. J.; Shi, J. F.; Liang, Y. L.; Tao, Z. L.; Liang, J.; Chen, J. J. Power Sources 2009, 187 (2), 620. doi: 10.1016/j. jpowsour.2008.11.028
-
[64]
(64) Pei, J.; Liang, M.; Chen, J.; Tao, Z. L.; Xu,W. Acta Phys. -Chim. Sin. 2008, 24 (11), 1950. [裴娟, 梁茂, 陈军, 陶占良, 许炜. 物理化学学报, 2008, 24 (11), 1950.] doi: 10.1016/S1872-1508(08)60077-7
-
[65]
(65) Horiuchi, T.; Miura, H.; Uchida, S. Chem. Commun. 2003, 3036.
-
[66]
(66) Zhang,W.; Zhu, R.; Liu, B.; Ramakrishna, S. Appl. Energy 2012, 90 (1), 305. doi: 10.1016/j.apenergy.2011.03.037
-
[67]
(67) Zhu, R.; Jiang, C. Y.; Liu, B.; Ramakrishna, S. Adv. Mater. 2009, 21 (9), 994. doi: 10.1002/adma.v21:9
-
[68]
(68) Ito, S.; Zakeeruddin, S. M.; Humphry-Baker, R.; Liska, P.; Charvet, R.; Comte, P.; Nazeeruddin, M. K.; Péchy, P.; Takata, M.; Miura, H.; Uchida, S.; Grätzel, M. Adv. Mater. 2006, 18 (9), 1202.
-
[69]
(69) Liao,W. P.; Hsu, S. C.; Lin,W. H.;Wu, J. J. J. Phys. Chem. C 2012, 116 (30), 15938. doi: 10.1021/jp304915x
-
[70]
(70) Wang, M. Q.;Wang, X. G. Sol. Energy Mater. Sol. Cells 2008, 92 (7), 766. doi: 10.1016/j.solmat.2008.01.015
-
[71]
(71) AbdulAlmohsin, S.; Cui, J. B. J. Phys. Chem. C 2012, 116 (17), 9433. doi: 10.1021/jp301881s
-
[72]
(72) Liu, J. S.; Tanaka, T.; Sivula, K.; Alivisatos, A. P.; Fréchet, J. M. J. J. Am. Chem. Soc. 2004, 126 (21), 6550. doi: 10.1021/ja0489184
-
[73]
(73) Briseno, A. L.; Holcombe, T.W.; Boukai, A. I.; Garnett, E. C.; Shelton, S.W.; Fréchet, J. J. M.; Yang, P. D. Nano Lett. 2010, 10 (1), 334. doi: 10.1021/nl9036752
-
[74]
(74) Mawyin, J.; Shupyk, I.;Wang, M. Q.; Poize, G.; Atienzar, P.; Ishwara, T.; Durrant, J. R.; Nelson, J.; Kanehira, D.; Yoshimoto, N.; Martini, C.; Shilova, E.; Secondo, P.; Brisset, H.; Fages, F.; Ackermann, J. J. Phys. Chem. C 2011, 115 (21), 10881. doi: 10.1021/jp112369t
-
[75]
(75) Querner, C.; Benedetto, A.; Demadrille, R.; Rannou, P.; Reiss, P. Chem. Mater. 2006, 18 (20), 4817. doi: 10.1021/cm061105p
-
[76]
(76) Bhongale, C. J.; Thelakkat, M. Sol. Energy Mater. Sol. Cells 2010, 94 (5), 817. doi: 10.1016/j.solmat.2009.12.030
-
[77]
(77) Zhang, Q. L.; Russell, T. P.; Emrick, T. Chem. Mater. 2007, 19 (15), 3712. doi: 10.1021/cm070603a
-
[1]
-
-
-
[1]
Ying Liang , Yuheng Deng , Shilv Yu , Jiahao Cheng , Jiawei Song , Jun Yao , Yichen Yang , Wanlei Zhang , Wenjing Zhou , Xin Zhang , Wenjian Shen , Guijie Liang , Bin Li , Yong Peng , Run Hu , Wangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098
-
[2]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006
-
[3]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[4]
Yameen Ahmed , Xiangxiang Feng , Yuanji Gao , Yang Ding , Caoyu Long , Mustafa Haider , Hengyue Li , Zhuan Li , Shicheng Huang , Makhsud I. Saidaminov , Junliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057
-
[5]
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
-
[6]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[7]
Qi Wu , Changhua Wang , Yingying Li , Xintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107
-
[8]
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007
-
[9]
Fanpeng Meng , Fei Zhao , Jingkai Lin , Jinsheng Zhao , Huayang Zhang , Shaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095
-
[10]
Weikang Wang , Yadong Wu , Jianjun Zhang , Kai Meng , Jinhe Li , Lele Wang , Qinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093
-
[11]
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025
-
[12]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002
-
[13]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021
-
[14]
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065
-
[15]
Jiandong Liu , Xin Li , Daxiong Wu , Huaping Wang , Junda Huang , Jianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039
-
[16]
Tao Xu , Wei Sun , Tianci Kong , Jie Zhou , Yitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021
-
[17]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[18]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036
-
[19]
Caiyun Jin , Zexuan Wu , Guopeng Li , Zhan Luo , Nian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094
-
[20]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[1]
Metrics
- PDF Downloads(947)
- Abstract views(1477)
- HTML views(94)