Citation: CAO Zhan-Li, WANG Zhi-Fan, YANG Ming-Li, WANG Fan. Theory Studies on Low-Lying States of Lead Chalcogenide Cations[J]. Acta Physico-Chimica Sinica, ;2014, 30(3): 431-438. doi: 10.3866/PKU.WHXB201401023 shu

Theory Studies on Low-Lying States of Lead Chalcogenide Cations

  • Received Date: 2 December 2013
    Available Online: 2 January 2014

    Fund Project: 国家自然科学基金(21273155)资助项目 (21273155)

  • In this work, we investigate the low-lying states of PbS, PbSe, and PbTe cations based on a recently developed equation-of-motion coupled-cluster approach for ionization potentials (EOMIP-CC) with spin-orbit coupling (SOC) at the CCSD level. Equilibrium bond lengths, harmonic frequencies as well as vertical and adiabatic ionization energies are calculated with EOMIP-SOC-CCSD and reasonable agreement with available experimental data is achieved. The contribution of triples is estimated by comparing results at the CCSD(T) level with those from EOMIP-CCSD when SOC is neglected. Better agreement with experimental data can be obtained if the contribution of triples is included. According to our results, the splitting between 2Π state is larger in PbTe+ than that in PbS+ and PbSe+, while coupling between 2Π1/2 and 2Σ1/2 owing to SOC is more significant in PbS+ and PbSe+. This is because the energy difference between 2Π and 2Σ+ states of PbTe+ is larger than that in PbS+ and PbSe+ and the SOC matrix element between 2Π1/2 and 2Σ1/2 states in PbTe+ is only half those in PbS+ and PbSe+. The present work presents new estimates on properties of these low-lying states and could serve as new references for future experiments.

  • 加载中
    1. [1]

      (1) Cao, C. F.;Wu, H. Z.; Si, J. X.; Xu, T. N.; Chen, J.; Shen,W. Z. Acta Phys. Sin. 2006, 55, 2021. [曹春芳, 吴惠桢, 斯剑霄, 徐天宁, 陈静, 沈文忠. 物理学报, 2006, 55, 2021.]

    2. [2]

      (2) Lipovskii, A.; Kolobkova, E.; Petrikov, V.; Kang, I.; Olkhovets, A.; Krauss, T.; Thomas, M.; Silcox, J.;Wise, F.; Shen, Q. Appl. Phys. Lett. 1997, 71, 3406. doi: 10.1063/1.120349

    3. [3]

      (3) Feit, Z.; McDonald, M.;Woods, R.; Archambault, V.; Mak, P. Appl. Phys. Lett. 1996, 68, 738. doi: 10.1063/1.116726

    4. [4]

      (4) Krauss, T. D.;Wise, F.W.; Tanner, D. B. Phys. Rev. Lett. 1996, 76, 1376. doi: 10.1103/PhysRevLett.76.1376

    5. [5]

      (5) Schwarzl, T.; Heib,W.; Springholz, G. Appl. Phys. Lett. 1999, 75, 1246. doi: 10.1063/1.124656

    6. [6]

      (6) Giuliano, B. M.; Bizzocchi, L.; Cooke, S.; Banser, D.; Hess, M.; Fritzsche, J.; Grabow, J. U. Phys. Chem. Chem. Phys. 2008, 10, 2078. doi: 10.1039/b716896a

    7. [7]

      (7) Troparevsky, M. C.; Chelikowsky, J. R. J. Chem. Phys. 2001, 114, 943. doi: 10.1063/1.1329126

    8. [8]

      (8) Karamanis, P.; Maroulis, G.; Pouchan, C. J. Chem. Phys. 2006, 124, 071101. doi: 10.1063/1.2173236

    9. [9]

      (9) Wang, J.; Ma, L.; Zhao, J.; Jackson, K. A. J. Chem. Phys. 2009, 130, 214307. doi: 10.1063/1.3147519

    10. [10]

      (10) Sanville, E.; Burnin, A.; BelBruno, J. J. J. Phys. Chem. A 2006, 110, 2378. doi: 10.1021/jp056218v

    11. [11]

      (11) Zeng, H.; Schelly, Z. A.; Ueno-Noto, K.; Marynick, D. S. J. Phys. Chem. A 2005, 109, 1616. doi: 10.1021/jp040457l

    12. [12]

      (12) He, J.; Liu, C.; Li, F.; Sa, R.;Wu, K. Chem. Phys. Lett. 2008, 457, 163. doi: 10.1016/j.cplett.2008.03.085

    13. [13]

      (13) Koirala, P.; Kiran, B.; Kandalam, A. K.; Fancher, C. A.; de Clercq, H. L.; Li, X.; Bowen, K. H. J. Chem. Phys. 2011, 135, 134311. doi: 10.1063/1.3635406

    14. [14]

      (14) Zeng, Q.; Shi, J.; Jiang, G.; Yang, M.;Wang, F.; Chen, J. J. Chem. Phys. 2013, 139, 094305. doi: 10.1063/1.4819695

    15. [15]

      (15) Hummer, K.; Grüneis, A.; Kresse, G. Phys. Rev. B 2007, 75, 195211. doi: 10.1103/PhysRevB.75.195211

    16. [16]

      (16) Albanesi, E. A.; Okoye, C.; Rodriguez, C. M. I.; Blanca, E. L. P. Y.; Petukhov, A. G. Phys. Rev. B 2000, 61, 16589. doi: 10.1103/PhysRevB.61.16589

    17. [17]

      (17) Bartnik, A.; Efros, A. L.; Koh,W. K.; Murray, C.;Wise, F. Phys. Rev. B 2010, 82, 195313. doi: 10.1103/PhysRevB.82.195313

    18. [18]

      (18) Isborn, C. M.; Kilina, S. V.; Li, X.; Prezhdo, O. V. J. Phys. Chem. C 2008, 112, 18291. doi: 10.1021/jp807283j

    19. [19]

      (19) Kamisaka, H.; Kilina, S. V.; Yamashita, K.; Prezhdo, O. V. J. Phys. Chem. C 2008, 112, 7800. doi: 10.1021/jp710435q

    20. [20]

      (20) Dolg, M.; Cao, X. Chem. Rev. 2011, 112, 403.

    21. [21]

      (21) Schwerdtfeger, P. ChemPhysChem 2011, 12, 3143. doi: 10.1002/cphc.201100387

    22. [22]

      (22) Balasubramanian, K. J. Phys. Chem. 1984, 88, 5759. doi: 10.1021/j150667a059

    23. [23]

      (23) Wang, L. S.; Niu, B.; Lee, Y. T.; Shirley, D.; Balasubramanian, K. J. Chem. Phys. 1990, 92, 899. doi: 10.1063/1.458124

    24. [24]

      (24) Jalbout, A. F.; Li, X. H.; Abou-Rachid, H. Int. J. Quantum Chem. 2007, 107, 522.

    25. [25]

      (25) Gauss, J. Encyclopedia of Computational Chemistry; Schleyer, P. V. R., Allinger, N. L., Clark, T., Gasteiger, J., Kollmann, P. A., Schaefer, H. F., Schreiner, P. R., Eds.;Wiley and Sons: New York, 1998; p 615.

    26. [26]

      (26) Bartlett, R. J.; MusiaB, M.Rev. Mod. Phys. 2007, 79, 291. doi: 10.1103/RevModPhys.79.291

    27. [27]

      (27) Raghavachari, K.; Trucks, G.W.; Pople, J. A.; Head- rdon, M. Chem. Phys. Lett. 1989, 157, 479. doi: 10.1016/S0009-2614(89)87395-6

    28. [28]

      (28) Tu, Z.;Wang, F.; Li, X. J. Chem. Phys. 2012, 136, 174102. doi: 10.1063/1.4704894

    29. [29]

      (29) Stanton, J. F.; Gauss, J. J. Chem. Phys. 1994, 101, 8938. doi: 10.1063/1.468022

    30. [30]

      (30) Wang, F.; Gauss, J.; van Wüllen, C. J. Chem. Phys. 2008, 129, 064113. doi: 10.1063/1.2968136

    31. [31]

      (31) Kim, I.; Park, Y. C.; Kim, H.; Lee, Y. S. Chem. Phys. 2012, 395, 115. doi: 10.1016/j.chemphys.2011.05.002

    32. [32]

      (32) Stanton, J. F.; Gauss, J. J. Chem. Phys. 1999, 111, 8785. doi: 10.1063/1.479673

    33. [33]

      (33) Manohar, P. U.; Stanton, J. F.; Krylov, A. I. J. Chem. Phys. 2009, 131, 114112. doi: 10.1063/1.3231133

    34. [34]

      (34) Purvis, G. D., III; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910. doi: 10.1063/1.443164

    35. [35]

      (35) Tu, Z.; Yang, D. D.;Wang, F.; Guo, J. J. Chem. Phys. 2011, 135, 034115. doi: 10.1063/1.3611052

    36. [36]

      (36) Wang, F.; Gauss, J. J. Chem. Phys. 2008, 129, 174110. doi: 10.1063/1.3000010

    37. [37]

      (37) Wang, F.; Gauss, J. J. Chem. Phys. 2009, 131, 164113. doi: 10.1063/1.3245954

    38. [38]

      (38) Stanton, J. F.; Bartlett, R. J. J. Chem. Phys. 1993, 98, 7029. doi: 10.1063/1.464746

    39. [39]

      (39) Yang, C. Y.; Rabii, S. J. Chem. Phys. 1978, 69, 2497. doi: 10.1063/1.436891

    40. [40]

      (40) Peterson, K. A.; Figgen, D.; ll, E.; Stoll, H.; Dolg, M. J. Chem. Phys. 2003, 119, 11113. doi: 10.1063/1.1622924

    41. [41]

      (41) Metz, B.; Stoll, H.; Dolg, M. J. Chem. Phys. 2000, 113, 2563. doi: 10.1063/1.1305880

    42. [42]

      (42) Armbruster, M. K.; Klopper,W.;Weigend, F. Phys. Chem. Chem. Phys. 2006, 8, 4862. doi: 10.1039/b610211e

    43. [43]

      (43) Stanton, J. F.; Gauss, J.; Harding, M. E.; Szalay, P. G. with contributions from Auer, A. A.; Bartlett, R. J.; Benedikt, U.; Berger, C.; Bernholdt, D. E.; Bomble, Y. J.; Cheng, L.;C hristiansen, O.; Heckert, M.; Heun, O.; Huber, C.; Jagau, T. C.; Jonsson, D.; Jusélius, J.; Klein, K.; Lauderdale,W. J.; Matthews, D. A.; Metzroth, T.; Mück, L. A.; O’Neill, D. P.;P rice, D. R.; Prochnow, E.; Puzzarini, C.; Ruud, K.; Schiffmann, F.; Schwalbach,W.; Stopkowicz, S.; Tajti, A.; Vázquez, J.;Wang, F.;Watts, J. D. and the integral packagesM OLECULE (Almlöf, J.; Taylor, P. R.), PROPS (Taylor, P. R.), ABACUS (Helgaker, T.; Jensen, H. J. A.; Jørgensen, P.; Olsen, J.), and ECP routines by Mitin, A. V.; van Wüllen, C., CFOUR, Version1.2; For the current version, see http://www.cfour.de.

    44. [44]

      (44) Huber, K. P.; Herzberg, G. Spectroscopic Constants of Diatomics, 1st ed.; Van Nostrand Reinhold Company: New York, 1979; pp 528-530.

    45. [45]

      (45) Liang, Y. N.;Wang, F.; Guo, J. J. Chem. Phys. 2013, 138, 094319. doi: 10.1063/1.4792435


  • 加载中
    1. [1]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    2. [2]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    3. [3]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    4. [4]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    5. [5]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    6. [6]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    7. [7]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    8. [8]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    9. [9]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    10. [10]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    11. [11]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    12. [12]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    13. [13]

      Lanjun Cheng Xinyuan Wang Jie An Xiang Wu Chengfeng Zhu Yanming Fu Yougui Li . Improvement of the Resolution Experiment of Racemic Tartaric Acid. University Chemistry, 2025, 40(7): 277-285. doi: 10.12461/PKU.DXHX202408010

    14. [14]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    15. [15]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    16. [16]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    17. [17]

      Simin Fang Hong Wu Wei Liu Wei Wei Hongyan Feng Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053

    18. [18]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    19. [19]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    20. [20]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

Metrics
  • PDF Downloads(554)
  • Abstract views(824)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return