Citation: SHENG Jia-Yi, LI Xiao-Jin, XU Yi-Ming. Effect of Sintering Temperature on the Photocatalytic Activity of Flower-Like Bi2WO6[J]. Acta Physico-Chimica Sinica, ;2014, 30(3): 508-512. doi: 10.3866/PKU.WHXB201312302 shu

Effect of Sintering Temperature on the Photocatalytic Activity of Flower-Like Bi2WO6

  • Received Date: 22 November 2013
    Available Online: 30 December 2013

    Fund Project: 国家重点基础研究发展规划项目(973) (2009CB825300,2011CB936003)资助 (973) (2009CB825300,2011CB936003)

  • Bi2WO6 is reportedly active for the photocatalytic degradation of organic compounds in aerated aqueous solution, but factors influencing the photocatalytic activity of pristine Bi2WO6 have received little attention. In this study, the effect of sintering temperature on the physical properties of flower-like Bi2WO6 was investigated. The catalyst was synthesized through the hydrothermal reaction of Na2WO4 and Bi(NO3)3 at 160 ℃ for 20 h, followed by sintering in air at different temperatures for 3 h. Bi2WO6 samples were characterized with X-ray diffraction, scanning electron microscopy, and Raman, ultraviolet-visible diffuse reflectance, and photoluminescence spectroscopies. All samples had similar phase compositions and electronic structures. Samples exhibited different activities for the photocatalytic degradation of phenol in aerated aqueous solution, under ultraviolet light. With increasing Bi2WO6 sintering temperature, the rate of phenol degradation first increased and then decreased. The maximum rate of phenol degradation was observed from the catalyst sintered at 350 ℃. Similar results were obtained when the rate of phenol degradation was normalized with the specific surface area of the catalyst, as determined by N2 adsorption. The observed sintering temperature-dependent photoactivity of Bi2WO6 was attributed to a combination of its crystallinity, light absorption, and surface defects.

  • 加载中
    1. [1]

      (1) Zhang, A. P.; Zhang, J. Z. Acta Phys. -Chim. Sin. 2010, 26, 1337. [张爱平, 张进治. 物理化学学报, 2010, 26, 1337.] doi: 10.3866/PKU.WHXB20100533

    2. [2]

      (2) Lin, X.; Lü, P.; Guan, Q. F.; Li, H. B.; Li, H. J.; Cai, J.; Zou, Y. Acta Phys. -Chim. Sin. 2012, 28, 1978. [林雪, 吕鹏, 关庆丰, 李海波, 李洪吉, 蔡杰, 邹阳. 物理化学学报, 2012, 28, 1978.] doi: 10.3866/PKU.WHXB201205172

    3. [3]

      (3) Liu, Y. F.; Ma, X. G.; Yi, X.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2012, 28, 654. [刘艳芳, 马新国, 易欣, 朱永法. 物理化学学报, 2012, 28, 654.] doi: 10.3866/PKU.WHXB201112232

    4. [4]

      (4) Zhang, L.;Wang, H.; Chen, Z.;Wong, P. K.; Liu, J. Appl. Catal. B: Environ. 2011, 106, 1.

    5. [5]

      (5) Zhang, L.; Zhu, Y. Catal. Sci. Technol. 2012, 2, 694. doi: 10.1039/c2cy00411a

    6. [6]

      (6) Kudo, A.; Hijii, S. Chem. Lett. 1999, 10, 1103.

    7. [7]

      (7) Shang, M.;Wang,W.; Sun, S.; Zhou, L.; Zhang, L. J. Phys. Chem. C 2008, 112, 10407. doi: 10.1021/jp802115w

    8. [8]

      (8) Shang, M.;Wang,W.; Xu, H. Cryst. Growth Des. 2009, 9, 991. doi: 10.1021/cg800799a

    9. [9]

      (9) Shang, M.;Wang,W.; Ren, J.; Sun, S.;Wang, L.; Zhou, L. J. Mater. Chem. 2009, 19, 6213. doi: 10.1039/b907849e

    10. [10]

      (10) Amano, F.; Nogami, K.; Abe, R.; Ohtani, B. J. Phys. Chem. C 2008, 112, 9320. doi: 10.1021/jp801861r

    11. [11]

      (11) Zhang, L.;Wang,W.; Chen, Z.; Zhou, L.; Xu, H.; Zhu,W. J. Mater. Chem. 2007, 17, 2526. doi: 10.1039/b616460a

    12. [12]

      (12) Shi, R.; Huang, G.; Lin, J.; Zhu, Y. J. Phys. Chem. C 2009, 113, 19633. doi: 10.1021/jp906680e

    13. [13]

      (13) Fu, H.; Zhang, S.; Xu, T.; Zhu, Y.; Chen, J. Environ. Sci. Technol. 2008, 42, 2085. doi: 10.1021/es702495w

    14. [14]

      (14) Guo, S.; Li, X.;Wang, H.; Dong, F.;Wu, Z. J. Colloid Interface Sci. 2012, 369, 373. doi: 10.1016/j.jcis.2011.12.007

    15. [15]

      (15) Duan, F.; Zheng, Y.; Chen, M. Appl. Sci. Res. 2011, 257, 1972.

    16. [16]

      (16) Zhou, L.; Yu, M.; Yang, J.;Wang, Y.; Yu, C. J. Phys. Chem. C 2010, 114, 18812. doi: 10.1021/jp107061p

    17. [17]

      (17) Song, X. C.; Zheng, Y. F.; Ma, R.; Zhang, Y. Y.; Yin, H. Y. J. Hazard. Mater. 2011, 192, 186.

    18. [18]

      (18) Zhang, L.; Man, Y.; Zhu, Y. ACS Catal. 2011, 1, 841. doi: 10.1021/cs200155z

    19. [19]

      (19) Amano, F.; Yamakata, A.; Nogami, K.; Osawa, M.; Ohtani, B. J. Phys. Chem. C 2011, 115, 16598. doi: 10.1021/jp2051257

    20. [20]

      (20) Fu, H.; Zhang, L.; Yao,W.; Zhu, Y. Appl. Catal. B 2006, 66, 100. doi: 10.1016/j.apcatb.2006.02.022

    21. [21]

      (21) Zhang, C.; Zhu, Y. Chem. Mater. 2005, 17, 3537. doi: 10.1021/cm0501517

    22. [22]

      (22) Amano, F.; Nogami, K.; Ohtani, B. J. Phys. Chem. C 2009, 113, 1536. doi: 10.1021/jp808685m

    23. [23]

      (23) Chakrabarti, S.; Ganguli, D.; Chaudhuri, S. Physica E 2004, 24, 333.

    24. [24]

      (24) Maczka, M.; Macalik, L.; Hermanowicz, K.; KepiDski, L.; Tomaszewski, P. J. Raman Spectrosc. 2010, 41, 1059.

    25. [25]

      (25) Graves, P. R.; Hua, G.; Myhra, S.; Thompson, J. G. J. Solid State Chem. 1995, 114, 112. doi: 10.1006/jssc.1995.1017

    26. [26]

      (26) Bordun, O. M. Inorg. Mater. 1998, 34, 1270.


  • 加载中
    1. [1]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    2. [2]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    3. [3]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    4. [4]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    5. [5]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    7. [7]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    8. [8]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    9. [9]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    10. [10]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    11. [11]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    12. [12]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    13. [13]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    14. [14]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    15. [15]

      Junjie TANGYunting ZHANGZhengjiang LIUJiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420

    16. [16]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    20. [20]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

Metrics
  • PDF Downloads(668)
  • Abstract views(1038)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return